
Jin-Yuan Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/821942/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of key aroma compounds in Gujinggong Chinese Baijiu by gas chromatography–olfactometry, quantitative measurements, and sensory evaluation. Food Research International, 2018, 105, 616-627.	6.2	140
2	Characterization of the Key Odorants in Chinese Zhima Aroma-Type Baijiu by Gas Chromatography–Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Studies. Journal of Agricultural and Food Chemistry, 2016, 64, 5367-5374.	5.2	137
3	Characterization of key aroma compounds in Chinese Guojing sesame-flavor Baijiu by means of molecular sensory science. Food Chemistry, 2019, 284, 100-107.	8.2	126
4	<i>Monascus</i> yellow, red and orange pigments from red yeast rice ameliorate lipid metabolic disorders and gut microbiota dysbiosis in Wistar rats fed on a high-fat diet. Food and Function, 2019, 10, 1073-1084.	4.6	79
5	Cytoprotective effects of a tripeptide from Chinese Baijiu against AAPH-induced oxidative stress in HepG2 cells <i>via</i> Nrf2 signaling. RSC Advances, 2018, 8, 10898-10906.	3.6	72
6	Characterization of key aroma compounds in Meilanchun sesame flavor style baijiu by application of aroma extract dilution analysis, quantitative measurements, aroma recombination, and omission/addition experiments. RSC Advances, 2018, 8, 23757-23767.	3.6	68
7	Characterization of key odorants causing the roasted and mud-like aromas in strong-aroma types of base Baijiu. Food Research International, 2019, 125, 108546.	6.2	64
8	Intracellular antioxidant effect of vanillin, 4-methylguaiacol and 4-ethylguaiacol: three components in Chinese Baijiu. RSC Advances, 2017, 7, 46395-46405.	3.6	56
9	Different distillation stages Baijiu classification by temperature-programmed headspace-gas chromatography-ion mobility spectrometry and gas chromatography-olfactometry-mass spectrometry combined with chemometric strategies. Food Chemistry, 2021, 365, 130430.	8.2	50
10	Immunomodulatory activity of a novel polysaccharide extracted from Huangshui on THP-1 cells through NO production and increased IL-6 and TNF-1± expression. Food Chemistry, 2020, 330, 127257.	8.2	48
11	Anti-inflammatory Mechanism Involved in 4-Ethylguaiacol-Mediated Inhibition of LPS-Induced Inflammation in THP-1 Cells. Journal of Agricultural and Food Chemistry, 2019, 67, 1230-1243.	5.2	46
12	The dynamics of volatile compounds and their correlation with the microbial succession during the traditional solid-state fermentation of Gutian Hong Qu glutinous rice wine. Food Microbiology, 2020, 86, 103347.	4.2	45
13	Comparison of two cooked vegetable aroma compounds, dimethyl disulfide and methional, in Chinese Baijiu by a sensory-guided approach and chemometrics. LWT - Food Science and Technology, 2021, 146, 111427.	5.2	45
14	Microbial diversity and flavor of Chinese rice wine (Huangjiu): an overview of current research and future prospects. Current Opinion in Food Science, 2021, 42, 37-50.	8.0	45
15	Dynamic changes of volatile and phenolic components during the whole manufacturing process of Wuyi Rock tea (Rougui). Food Chemistry, 2022, 367, 130624.	8.2	45
16	Joint direct injection and GC–MS chemometric approach for chemical profile and sulfur compounds of sesame-flavor Chinese Baijiu (Chinese liquor). European Food Research and Technology, 2018, 244, 145-160.	3.3	42
17	Insights into the Role of 2-Methyl-3-furanthiol and 2-Furfurylthiol as Markers for the Differentiation of Chinese Light, Strong, and Soy Sauce Aroma Types of Baijiu. Journal of Agricultural and Food Chemistry, 2020, 68, 7946-7954.	5.2	42
18	Analysis of antioxidant effect of two tripeptides isolated from fermented grains (Jiupei) and the antioxidative interaction with 4â€methylguaiacol, 4â€ethylguaiacol, and vanillin. Food Science and Nutrition, 2019, 7, 2391-2403.	3.4	41

JIN-YUAN SUN

#	Article	IF	CITATIONS
19	Why the key aroma compound of soy sauce aroma type baijiu has not been revealed yet?. LWT - Food Science and Technology, 2022, 154, 112735.	5.2	41
20	Investigation of volatile thiol contributions to rapeseed oil by odor active value measurement and perceptual interactions. Food Chemistry, 2022, 373, 131607.	8.2	41
21	Low Quantity but Critical Contribution to Flavor: Review of The Current Understanding of Volatile Sulfur-containing Compounds in Baijiu. Journal of Food Composition and Analysis, 2021, 103, 104079.	3.9	38
22	Evaluation of antioxidant peptides generated from Jiuzao (residue after Baijiu distillation) protein hydrolysates and their effect of enhancing healthy value of Chinese Baijiu. Journal of the Science of Food and Agriculture, 2020, 100, 59-73.	3.5	36
23	A fluorescent nanoprobe for 4-ethylguaiacol based on the use of a molecularly imprinted polymer doped with a covalent organic framework grafted onto carbon nanodots. Mikrochimica Acta, 2019, 186, 182.	5.0	35
24	Optimization of <i>Jiuzao</i> protein hydrolysis conditions and antioxidant activity <i>in vivo</i> of <i>Jiuzao</i> tetrapeptide Asp-Arg-Glu-Leu by elevating the Nrf2/Keap1-p38/PI3K-MafK signaling pathway. Food and Function, 2021, 12, 4808-4824.	4.6	34
25	Cell wall polysaccharides: before and after autolysis of brewer's yeast. World Journal of Microbiology and Biotechnology, 2018, 34, 137.	3.6	33
26	Characterization of benzenemethanethiol in sesame-flavour baijiu by high-performance liquid chromatography-mass spectrometry and sensory science. Food Chemistry, 2021, 364, 130345.	8.2	32
27	Assessment of phthalate ester residues and distribution patterns in Baijiu raw materials and Baijiu. Food Chemistry, 2019, 283, 508-516.	8.2	30
28	Identification of volatile sulfur-containing compounds and the precursor of dimethyl sulfide in cold-pressed rapeseed oil by GC–SCD and UPLC–MS/MS. Food Chemistry, 2022, 367, 130741.	8.2	30
29	HS-SPME Combined with GC-MS/O to Analyze the Flavor of Strong Aroma Baijiu Daqu. Foods, 2022, 11, 116.	4.3	30
30	Isolation, purification, structure characterization of a novel glucan from Huangshui, a byproduct of Chinese Baijiu, and its immunomodulatory activity in LPS-stimulated THP-1 cells. International Journal of Biological Macromolecules, 2020, 161, 406-416.	7.5	29
31	Elucidation of The Antiâ€Inflammatory Effect of Vanillin In Lpsâ€Activated THPâ€1 Cells. Journal of Food Science, 2019, 84, 1920-1928.	3.1	27
32	Uncover the Flavor Code of Roasted Sesame for Sesame Flavor Baijiu: Advance on the Revelation of Aroma Compounds in Sesame Flavor Baijiu by Means of Modern Separation Technology and Molecular Sensory Evaluation. Foods, 2022, 11, 998.	4.3	25
33	Interaction mechanism of kafirin with ferulic acid and tetramethyl pyrazine: Multiple spectroscopic and molecular modeling studies. Food Chemistry, 2021, 363, 130298.	8.2	24
34	Quantification and cytoprotection by vanillin, 4-methylguaiacol and 4-ethylguaiacol against AAPH-induced abnormal oxidative stress in HepG2 cells. RSC Advances, 2018, 8, 35474-35484.	3.6	23
35	Exploration of key aroma active compounds in strong flavor Baijiu during the distillation by modern instrument detection technology combined with multivariate statistical analysis methods. Journal of Food Composition and Analysis, 2022, 110, 104577.	3.9	23
36	Interactions between <i>p</i> -Cresol and Ala-Lys-Arg-Ala (AKRA) from Sesame-Flavor-Type Baijiu. Langmuir, 2018, 34, 12549-12559.	3.5	22

JIN-YUAN SUN

#	Article	IF	CITATIONS
37	Aroma Investigation of Chios Mastic Gum (<i>Pistacia lentiscus</i> Variety <i>Chia</i>) Using Headspace Gas Chromatography Combined with Olfactory Detection and Chiral Analysis. Journal of Agricultural and Food Chemistry, 2019, 67, 13420-13429.	5.2	22
38	Characterization of 3-Methylindole as a Source of a "Mud―like Off-Odor in Strong-Aroma Types of Base Baijiu. Journal of Agricultural and Food Chemistry, 2018, 66, 12765-12772.	5.2	21
39	Isolation and evaluation of two angiotensin-l-converting enzyme inhibitory peptides from fermented grains (Jiupei) used in Chinese Baijiu production. RSC Advances, 2018, 8, 37451-37461.	3.6	20
40	Microbial composition and dynamic succession during the Daqu production process of Northern Jiang-flavored liquor in China. 3 Biotech, 2021, 11, 224.	2.2	20
41	Unraveling variation on the profile aroma compounds of strong aroma type of Baijiu in different regions by molecular matrix analysis and olfactory analysis. RSC Advances, 2021, 11, 33511-33521.	3.6	20
42	Biosynthesis of pleasant aroma by enokitake (Flammulina velutipes) with a potential use in a novel tea drink. LWT - Food Science and Technology, 2021, 140, 110646.	5.2	19
43	Bacterial composition changes and volatile compounds during the fermentation of shrimp paste: Dynamic changes of microbial communities and flavor composition. Food Bioscience, 2021, 43, 101169.	4.4	19
44	Matrix Effects in Detection of Phthalate Esters from Wheat by a Modified QuEChERS Method with GC/MS. Food Analytical Methods, 2017, 10, 3166-3180.	2.6	18
45	Analysis, occurrence, and potential sensory significance of tropical fruit aroma thiols, 3-mercaptohexanol and 4-methyl-4-mercapto-2-pentanone, in Chinese Baijiu. Food Chemistry, 2021, 363, 130232.	8.2	18
46	Pulse electric field assisted process for extraction of Jiuzao glutelin extract and its physicochemical properties and biological activities investigation. Food Chemistry, 2022, 383, 132304.	8.2	17
47	Validation of a QuEChERSâ€Based Gas Chromatographyâ€Mass Spectrometry (GCâ€MS) Method for Analysis of Phthalate Esters in Grain Sorghum. Journal of Food Science, 2018, 83, 892-901.	3.1	16
48	Preparation of modified Jiuzao glutelin isolate with carboxymethyl chitosan by ultrasound-stirring assisted Maillard reaction and its protective effect of loading resveratrol/quercetin in nano-emulsion. Ultrasonics Sonochemistry, 2022, 88, 106094.	8.2	12
49	Diversity, enzyme production and antibacterial activity of Bacillus strains isolated from sesame-flavored liquor Daqu. Archives of Microbiology, 2021, 203, 5831-5839.	2.2	11
50	Determination of phenolic compounds in alcoholic fermentation materials and spent grains by ultrasound-assisted alkali alcohol extraction coupled with HPLC. Analytical Methods, 2019, 11, 5366-5375.	2.7	10
51	Antioxidant mechanism exploration of the tripeptide Val-Asn-Pro generated from Jiuzao and its potential application in baijiu. Food and Chemical Toxicology, 2021, 155, 112402.	3.6	9
52	Supplementary selenium in the form of selenylation α-D-1,6-glucan ameliorates dextran sulfate sodium induced colitis in vivo. International Journal of Biological Macromolecules, 2022, 195, 67-74.	7.5	9
53	The effect of saliva on the aroma release of esters in simulated baijiu under the impact of high ethanol concentration. Journal of Food Composition and Analysis, 2021, 104, 104134.	3.9	8
54	Content changes of Jiupei tripeptide Tyr-Gly-Asp during simulated distillation process of baijiu and the potential in vivo antioxidant ability investigation. Journal of Food Composition and Analysis, 2021, 102, 104034.	3.9	8

Jin-Yuan Sun

#	Article	IF	CITATIONS
55	Dual-color blending based visual LAMP for food allergen detection: A strategy with enlarged color variation range and contrast. Food Chemistry: X, 2022, 13, 100201.	4.3	8
56	Qualitative and quantitative research of propyl lactate in brewed alcoholic beverages. International Journal of Food Properties, 2018, 21, 1351-1361.	3.0	7
57	Screening and identifying microorganisms with feruloyl esterase activity in Chinese sesame-flavour baijiu fermentation materials (Jiupei). Journal of Food Composition and Analysis, 2021, 102, 104069.	3.9	6
58	Identification of novel paralytic shellfish toxin binding protein via homology modeling and molecular docking. Toxicon, 2022, 211, 61-69.	1.6	6
59	Characterization of prolamin recycled from the byproduct of the Baijiu brewing industry (Jiuzao) by SDS-PAGE, multispectral analysis, and morphological analysis. Food Bioscience, 2022, 49, 101854.	4.4	4
60	Multivariate analysis on the relationship between radical scavenging activities and phenolic compounds of baijiu and its protective effect against LPS-induced inflammation in THP-1 cells. , 2022, 29, 116-127.		3
61	Fabrication of Hydrogel Tubes with Vascular Mimicked Stiffness for Construction of in Vitro Vascular Models. ACS Applied Bio Materials, 2018, 1, 237-245.	4.6	2
62	Microbial diversity analysis of vineyard son the eastern foothills of the Helan Mountain region using high-throughput sequencing. Food Science and Technology, 0, 42, .	1.7	2
63	Assessment of in vivo antioxidant activity of a tripeptide Alaâ€∓yrâ€le from Jiuzao (a byâ€product of baijiu) Tj ET Preservation, 2021, 45, e15163.	Qq1 1 0.7 2.0	'84314 rgB 1