Rui D Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8219314/publications.pdf

Version: 2024-02-01

		840119	996533	
15	659	11	15	
papers	citations	h-index	g-index	
16	16	16	854	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Hyperosmotic stress induces metacaspase- and mitochondria-dependent apoptosis inSaccharomyces cerevisiae. Molecular Microbiology, 2005, 58, 824-834.	1.2	161
2	Mitochondria-dependent apoptosis in yeast. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1286-1302.	1.9	120
3	Isc1p Plays a Key Role in Hydrogen Peroxide Resistance and Chronological Lifespan through Modulation of Iron Levels and Apoptosis. Molecular Biology of the Cell, 2008, 19, 865-876.	0.9	96
4	The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines. Applied Microbiology and Biotechnology, 2011, 89, 271-280.	1.7	79
5	Specific modulation of apoptosis and Bcl-xL phosphorylation in yeast by distinct mammalian protein kinase C isoforms. Journal of Cell Science, 2006, 119, 3171-3181.	1.2	41
6	Developmental roles of protein Nâ€terminal acetylation. Proteomics, 2015, 15, 2402-2409.	1.3	25
7	Purification and functional characterization of protoplasts and intact vacuoles from grape cells. BMC Research Notes, 2010, 3, 19.	0.6	24
8	Modulation of Bax mitochondrial insertion and induced cell death in yeast by mammalian protein kinase Cî±. Experimental Cell Research, 2011, 317, 781-790.	1.2	23
9	The Importance of Humanized Yeast to Better Understand the Role of Bcl-2 Family in Apoptosis: Finding of Novel Therapeutic Opportunities. Current Pharmaceutical Design, 2011, 17, 246-255.	0.9	22
10	Absence of the Spindle Assembly Checkpoint Restores Mitotic Fidelity upon Loss of Sister Chromatid Cohesion. Current Biology, 2018, 28, 2837-2844.e3.	1.8	19
11	Naa50/San-dependent N-terminal acetylation of Scc1 is potentially important for sister chromatid cohesion. Scientific Reports, 2016, 6, 39118.	1.6	15
12	N-terminal acetylation modulates Bax targeting to mitochondria. International Journal of Biochemistry and Cell Biology, 2018, 95, 35-42.	1.2	15
13	Flow cytometry as a novel tool for structural and functional characterization of isolated yeast vacuoles. Microbiology (United Kingdom), 2013, 159, 848-856.	0.7	10
14	Yeast as a Powerful Model System for the Study of Apoptosis Regulation by Protein Kinase C Isoforms. Current Pharmaceutical Design, 2012, 18, 2492-2500.	0.9	7
15	NineTeen Complex-subunit Salsa is required for efficient splicing of a subset of introns and dorsal–ventral patterning. Rna, 2020, 26, 1935-1956.	1.6	2