
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8219214/publications.pdf Version: 2024-02-01

ALREDT DU OT

#	Article	IF	CITATIONS
1	Strategies to support teachers' professional development regarding senseâ€making in contextâ€based science curricula. Science Education, 2021, 105, 127-165.	1.8	13
2	Designing context-based teaching materials by transforming authentic scientific modelling practices in chemistry. International Journal of Science Education, 2018, 40, 1108-1135.	1.0	25
3	Designing a primary science curriculum in a globalizing world: How do social constructivism and Vietnamese culture meet?. Cultural Studies of Science Education, 2017, 12, 739-760.	0.9	3
4	The validity and reliability of the cross-national comparison of degree programme levels in European countries. What have students learnt?. European Journal of Psychology of Education, 2017, 32, 703-723.	1.3	1
5	Teacher dilemmas in challenging students in higher education. Teaching in Higher Education, 2017, 22, 318-335.	1.7	27
6	Student engagement and foreign language learning through online social networks. Asian-Pacific Journal of Second and Foreign Language Education, 2016, 1, .	0.7	44
7	An Activityâ€Based Instructional Framework for Transforming Authentic Modeling Practices into Meaningful Contexts for Learning in Science Education. Science Education, 2016, 100, 1092-1123.	1.8	28
8	A Framework for Empowering Teachers for Teaching and Designing Context-Based Chemistry Education. , 2016, , 191-211.		4
9	Concluding Reflections on Context-Based Learning Environments in Science. , 2016, , 225-242.		3
10	Interaction between Teachers and Teaching Materials. , 2016, , 125-143.		2
11	Autonomy, competence, and relatedness in foreign language learning through Facebook. Computers in Human Behavior, 2015, 48, 126-134.	5.1	64
12	Adaptive research supervision: exploring expert thesis supervisors' practical knowledge. Higher Education Research and Development, 2015, 34, 117-130.	1.9	37
13	The implementation of a social constructivist approach in primary science education in Confucian heritage culture: the case of Vietnam. Cultural Studies of Science Education, 2015, 10, 665-693.	0.9	24
14	Challenging high-ability students. Studies in Higher Education, 2014, 39, 659-679.	2.9	30
15	Pre-university Chemistry Students in a Mimicked Scholarly Peer Review. International Journal of Science Education, 2014, 36, 2514-2533.	1.0	3
16	Strategies of Expert Teachers for Teaching Identification of Business Opportunities. Industry and Higher Education, 2014, 28, 97-111.	1.4	1
17	Uitdagingen voor onderzoek naar honoursonderwijs. Tijdschrift Voor Hoger Onderwijs, 2014, 31-32, 124-136.	0.0	4
18	De honourscommunity: kenmerken, functies en strategieën. Tijdschrift Voor Hoger Onderwijs, 2014, 31-32, 20-36.	0.0	1

#	Article	IF	CITATIONS
19	Quality assurance in higher education: analysis of grades for reviewing course levels. Quality and Quantity, 2013, 47, 581-598.	2.0	12
20	How to persuade honors students to go the extra mile: creating a challenging learning environment. High Ability Studies, 2013, 24, 115-134.	1.0	18
21	Evaluating the level of degree programmes in higher education: the case of nursing. Assessment and Evaluation in Higher Education, 2013, 38, 857-874.	3.9	2
22	Evaluating the level of degree programmes in higher education: conceptual design. Assessment and Evaluation in Higher Education, 2013, 38, 905-918.	3.9	2
23	Fostering the competence of science students in identifying business opportunities: a design research approach. International Journal of Entrepreneurial Venturing, 2013, 5, 28.	0.3	4
24	Macro–Micro Thinking with Structure–Property Relations: Integrating â€~Meso-levels' in Secondary Education. Innovations in Science Education and Technology, 2013, , 419-436.	0.1	11
25	How to Benefit from the Informal and Interdisciplinary Dimension of Chemistry in Teaching. , 2013, , 241-268.		11
26	Evaluating a Professional Development Framework to Empower Chemistry Teachers to Design Context-Based Education. International Journal of Science Education, 2012, 34, 1487-1508.	1.0	12
27	Community building of (student) teachers and a teacher educator in a school–university partnership. Learning Environments Research, 2012, 15, 299-318.	1.8	9
28	Master's thesis supervision: relations between perceptions of the supervisor–student relationship, final grade, perceived supervisor contribution to learning and student satisfaction. Studies in Higher Education, 2012, 37, 925-939.	2.9	69
29	Cooperative Learning in Vietnam and the West–East educational transfer. Asia Pacific Journal of Education, 2012, 32, 137-152.	1.2	25
30	Domain-Specific Expertise of Chemistry Teachers on Context-Based Education About Macro–Micro Thinking in Structure–Property Relations. Research in Science Education, 2012, 42, 567-588.	1.4	10
31	Evaluation of a Design Principle for Fostering Students' Epistemological Views on Models and Modelling Using Authentic Practices as Contexts for Learning in Chemistry Education. International Journal of Science Education, 2011, 33, 1539-1569.	1.0	26
32	Concept Development and Transfer in Contextâ€Based Science Education. International Journal of Science Education, 2011, 33, 817-837.	1.0	183
33	Exploring a Framework for Professional Development in Curriculum Innovation: Empowering Teachers for Designing Context-Based Chemistry Education. Research in Science Education, 2011, 41, 369-388.	1.4	33
34	Classroom Implementation of Contextâ€based Chemistry Education by Teachers: The relation between experiences of teachers and the design of materials. International Journal of Science Education, 2011, 33, 1407-1432.	1.0	38
35	Authentic competence-based learning in university education in entrepreneurship. International Journal of Entrepreneurship and Small Business, 2010, 9, 20.	0.2	20
36	A framework for teaching scientific inquiry in upper secondary school chemistry. Journal of Research in Science Teaching, 2010, 47, 788-806.	2.0	23

#	Article	IF	CITATIONS
37	Providing Students with a Sense of Purpose by Adapting a Professional Practice. International Journal of Science Education, 2010, 32, 603-627.	1.0	24
38	Assessment of competence in clinical reasoning and decisionâ€making under uncertainty: the script concordance test method. Assessment and Evaluation in Higher Education, 2010, 35, 661-673.	3.9	15
39	CSCL in teacher training: what learning tasks lead to collaboration?. Technology, Pedagogy and Education, 2010, 19, 63-78.	3.3	15
40	Teachers implementing context-based teaching materials: a framework for case-analysis in chemistry. Chemistry Education Research and Practice, 2010, 11, 193-206.	1.4	21
41	Students' Involvement in Authentic Modelling Practices as Contexts in Chemistry Education. Research in Science Education, 2009, 39, 681-700.	1.4	20
42	Cooperative learning that features a culturally appropriate pedagogy. British Educational Research Journal, 2009, 35, 857-875.	1.4	23
43	Micro–Macro Thinking in Chemical Education: Why and How to Escape. Models and Modeling in Science Education, 2009, , 31-54.	0.6	20
44	The effect of a pretest in an interactive, multimodal pretraining system for learning science concepts. Educational Research and Evaluation, 2009, 15, 571-590.	0.9	3
45	Teaching Molecular Diffusion Using an Inquiry Approach. Diffusion Activities in a Secondary School Inquiry-Learning Community. Journal of Chemical Education, 2009, 86, 1437.	1.1	10
46	Neocolonialism in education: Cooperative Learning in an Asian context. Comparative Education, 2009, 45, 109-130.	1.8	151
47	Towards a framework for a professional development programme: empowering teachers for context-based chemistry education. Chemistry Education Research and Practice, 2009, 10, 164-175.	1.4	27
48	Strategies for a professional development programme: empowering teachers for context-based chemistry education. Chemistry Education Research and Practice, 2009, 10, 154-163.	1.4	18
49	Structure–Property Relations Between Macro and Micro Representations: Relevant Meso-levels in Authentic Tasks. Models and Modeling in Science Education, 2009, , 195-213.	0.6	25
50	Selection of Authentic Modelling Practices as Contexts for Chemistry Education. International Journal of Science Education, 2008, 30, 1867-1890.	1.0	39
51	Culturally appropriate pedagogy: the case of group learning in a Confucian Heritage Culture context. Intercultural Education, 2006, 17, 1-19.	0.4	206
52	The Use of "Contexts―as a Challenge for the Chemistry Curriculum: Its successes and the need for further development and understanding. International Journal of Science Education, 2006, 28, 1087-1112.	1.0	98
53	Peer assessment in university teaching: evaluating seven course designs. Assessment and Evaluation in Higher Education, 2006, 31, 19-36.	3.9	127
54	A Research Approach to Designing Chemistry Education using Authentic Practices as Contexts. International Journal of Science Education, 2006, 28, 1063-1086.	1.0	194

#	Article	IF	CITATIONS
55	Design principles and outcomes of peer assessment in higher education. Studies in Higher Education, 2006, 31, 341-356.	2.9	113
56	Why Do You "Need to Knowâ€? Contextâ€based education. International Journal of Science Education, 2006, 28, 953-956.	1.0	88
57	Designing student peer assessment in higher education: analysis of written and oral peer feedback. Teaching in Higher Education, 2006, 11, 135-147.	1.7	79
58	Cooperative learning vs Confucian heritage culture's collectivism: confrontation to reveal some cultural conflicts and mismatch. Asia Europe Journal, 2005, 3, 403-419.	0.7	141
59	Effects of Collaborative and Individual Learning in a Blended Learning Environment. Education and Information Technologies, 2005, 10, 51-65.	3.5	9
60	Virtual project rooms for education in engineering. European Journal of Engineering Education, 2004, 29, 73-85.	1.5	0
61	Enhancement of Quality in Chemical Inquiry by Pre-University Students. International Journal of Science and Mathematics Education, 2004, 2, 493-509.	1.5	9
62	Design Elements for a CSCL Environment in a Teacher Training Programme. Education and Information Technologies, 2002, 7, 377-384.	3.5	15
63	Chemistry Curricula for General Education: Analysis and Elements of A Design. , 2002, , 101-124.		13
64	Design Elements for a CSCL Environment in a Teacher Training Programme. , 2002, , 745-754.		3
65	Acids and Bases in Layers: The Stratal Structure of an Ancient Topic. Journal of Chemical Education, 2001, 78, 494.	1.1	36
66	Normal Science Education and its Dangers: The Case of School Chemistry. Science and Education, 2000, 9, 123-159.	1.7	58
67	ALEXIS: computer-assisted feedback on written assignments (1). Computers and Composition, 1986, 4, 32-45.	0.7	3