Luiz K C De Souza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8219090/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-isothermal kinetics evaluation of buriti and inaja seed biomass waste for pyrolysis thermochemical conversion technology. Biomass Conversion and Biorefinery, 2023, 13, 10893-10909.	2.9	10
2	Renewable Energy from Biomass: an Overview of the Amazon Region. Bioenergy Research, 2022, 15, 834-849.	2.2	12
3	Analysis of thermal degradation of peach palm (Bactris gasipaes Kunth) seed using isoconversional models. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 367-387.	0.8	4
4	Bioenergy potential analysis of Brazil nut biomass residues through pyrolysis: Gas emission, kinetics, and thermodynamic parameters. , 2022, 1, 100002.		8
5	Role of activated carbons as metal-free catalysts. , 2022, , 245-265.		0
6	Heterogeneous carbon metal-free catalysts. , 2022, , 195-212.		0
7	Magnetic acid catalyst produced from acai seeds and red mud for biofuel production. Energy Conversion and Management, 2021, 228, 113636.	4.4	27
8	One-step synthesis of a heterogeneous catalyst by the hydrothermal carbonization of acai seed. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 199-220.	0.8	7
9	Pyrolysis of acai seed biomass: Kinetics and thermodynamic parameters using thermogravimetric analysis. Bioresource Technology Reports, 2020, 12, 100553.	1.5	42
10	Activated carbon obtained from amazonian biomass tailings (acai seed): Modification, characterization, and use for removal of metal ions from water. Journal of Environmental Management, 2020, 270, 110868.	3.8	102
11	Hierarchical porous carbon derived from acai seed biowaste for supercapacitor electrode materials. Journal of Materials Science: Materials in Electronics, 2020, 31, 12148-12157.	1.1	27
12	Utilization of acai stone biomass for the sustainable production of nanoporous carbon for CO2 capture. Sustainable Materials and Technologies, 2020, 25, e00168.	1.7	19
13	Low temperature sulfonation of acai stone biomass derived carbons as acid catalysts for esterification reactions. Energy Conversion and Management, 2019, 196, 821-830.	4.4	67
14	Combustion properties of potential Amazon biomass waste for use as fuel. Journal of Thermal Analysis and Calorimetry, 2019, 138, 3535-3539.	2.0	32
15	Characterization, thermal properties and phase transitions of amazonian vegetable oils. Journal of Thermal Analysis and Calorimetry, 2017, 127, 1221-1229.	2.0	41
16	Microwave-assisted single-surfactant templating synthesis of mesoporous zeolites. RSC Advances, 2016, 6, 54956-54963.	1.7	10
17	Saran-Derived Carbons for CO2and Benzene Sorption at Ambient Conditions. Industrial & Engineering Chemistry Research, 2014, 53, 15383-15388.	1.8	15
18	Coconut shell-based microporous carbons for CO2 capture. Microporous and Mesoporous Materials, 2013, 180, 280-283.	2.2	161

Luiz K C De Souza

#	Article	IF	CITATIONS
19	Development of microporous carbons for CO2 capture by KOH activation of African palm shells. Journal of CO2 Utilization, 2013, 2, 35-38.	3.3	122
20	Enhancement of CO2 adsorption on phenolic resin-based mesoporous carbons by KOH activation. Carbon, 2013, 65, 334-340.	5.4	130
21	Rapid synthesis and characterization of CeMCM-41. Powder Technology, 2012, 229, 1-6.	2.1	11
22	Influence of the incorporated metal on template removal from MCM-41 type mesoporous materials. Journal of Thermal Analysis and Calorimetry, 2011, 106, 355-361.	2.0	23
23	Determination of the oxidative stability by DSC of vegetable oils from the Amazonian area. Bioresource Technology, 2011, 102, 5873-5877.	4.8	85
24	Blue pigments based on CoxZn1â^'xAl2O4 spinels synthesized by the polymeric precursor method. Dyes and Pigments, 2009, 81, 187-192.	2.0	161
25	Production of biodiesel by esterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41. Fuel, 2009, 88, 461-468.	3.4	187