Arnab K Chatterjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/82190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 2020, 586, 113-119.	13.7	672
2	<i>In silico</i> activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9059-9064.	3.3	400
3	Targeting Plasmodium PI(4)K to eliminate malaria. Nature, 2013, 504, 248-253.	13.7	377
4	Decarboxylative borylation. Science, 2017, 356, .	6.0	312
5	Imaging of <i>Plasmodium</i> Liver Stages to Drive Next-Generation Antimalarial Drug Discovery. Science, 2011, 334, 1372-1377.	6.0	308
6	Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4453-4458.	3.3	259
7	Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science, 2020, 369, 993-999.	6.0	259
8	A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nature Communications, 2010, 1, 57.	5.8	250
9	Antimalarial drug discovery — approaches and progress towards new medicines. Nature Reviews Microbiology, 2013, 11, 849-862.	13.6	244
10	Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. Nature Chemical Biology, 2008, 4, 347-356.	3.9	203
11	A metabolite-derived protein modification integrates glycolysis with KEAP1–NRF2 signalling. Nature, 2018, 562, 600-604.	13.7	201
12	Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2510-7.	3.3	188
13	The ReFRAME library as a comprehensive drug repurposing library and its application to the treatment of cryptosporidiosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10750-10755.	3.3	165
14	Indolcarboxamide Is a Preclinical Candidate for Treating Multidrug-Resistant Tuberculosis. Science Translational Medicine, 2013, 5, 214ra168.	5.8	134
15	A High-Throughput Screen To Identify Inhibitors of ATP Homeostasis in Non-replicating <i>Mycobacterium tuberculosis</i> . ACS Chemical Biology, 2012, 7, 1190-1197.	1.6	123
16	KAF156 Is an Antimalarial Clinical Candidate with Potential for Use in Prophylaxis, Treatment, and Prevention of Disease Transmission. Antimicrobial Agents and Chemotherapy, 2014, 58, 5060-5067.	1.4	122
17	Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum. Nature Communications, 2014, 5, 5521.	5.8	108
18	Imidazolopiperazines: Hit to Lead Optimization of New Antimalarial Agents. Journal of Medicinal Chemistry, 2011, 54, 5116-5130.	2.9	91

ARNAB K CHATTERJEE

#	Article	IF	CITATIONS
19	A high-throughput phenotypic screen identifies clofazimine as a potential treatment for cryptosporidiosis. PLoS Neglected Tropical Diseases, 2017, 11, e0005373.	1.3	91
20	Design, Synthesis, and Biological Evaluation of Indole-2-carboxamides: A Promising Class of Antituberculosis Agents. Journal of Medicinal Chemistry, 2013, 56, 8849-8859.	2.9	85
21	Imidazolopiperazines: Lead Optimization of the Second-Generation Antimalarial Agents. Journal of Medicinal Chemistry, 2012, 55, 4244-4273.	2.9	83
22	Cell-based screen for discovering lipopolysaccharide biogenesis inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6834-6839.	3.3	81
23	Drug repurposing screens identify chemical entities for the development of COVID-19 interventions. Nature Communications, 2021, 12, 3309.	5.8	81
24	Mutations in the P-Type Cation-Transporter ATPase 4, PfATP4, Mediate Resistance to Both Aminopyrazole and Spiroindolone Antimalarials. ACS Chemical Biology, 2015, 10, 413-420.	1.6	75
25	Small molecule inhibitors of <i>trans</i> -translation have broad-spectrum antibiotic activity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10282-10287.	3.3	73
26	Identification of inhibitors for putative malaria drug targets among novel antimalarial compounds. Molecular and Biochemical Parasitology, 2011, 175, 21-29.	0.5	69
27	Substituted 2-Phenylimidazopyridines: A New Class of Drug Leads for Human African Trypanosomiasis. Journal of Medicinal Chemistry, 2014, 57, 828-835.	2.9	67
28	Approved Anti-cancer Drugs Target Oncogenic Non-coding RNAs. Cell Chemical Biology, 2018, 25, 1086-1094.e7.	2.5	65
29	2-Sulfonylpyridines as Tunable, Cysteine-Reactive Electrophiles. Journal of the American Chemical Society, 2020, 142, 8972-8979.	6.6	64
30	Repurposing isoxazoline veterinary drugs for control of vector-borne human diseases. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6920-E6926.	3.3	62
31	KAI407, a Potent Non-8-Aminoquinoline Compound That Kills Plasmodium cynomolgi Early Dormant Liver Stage Parasites <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2014, 58, 1586-1595.	1.4	61
32	Small molecule-mediated inhibition of myofibroblast transdifferentiation for the treatment of fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4679-4684.	3.3	60
33	Targeted Delivery of LXR Agonist Using a Site-Specific Antibody–Drug Conjugate. Bioconjugate Chemistry, 2015, 26, 2216-2222.	1.8	59
34	Reprogramming of Protein-Targeted Small-Molecule Medicines to RNA by Ribonuclease Recruitment. Journal of the American Chemical Society, 2021, 143, 13044-13055.	6.6	56
35	Synthesis and evaluation of arylaminoethyl amides as noncovalent inhibitors of cathepsin S. Part 3: Heterocyclic P3. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1975-1980.	1.0	52
36	Utilizing Chemical Genomics to Identify Cytochrome b as a Novel Drug Target for Chagas Disease. PLoS Pathogens, 2015, 11, e1005058.	2.1	52

ARNAB K CHATTERJEE

#	Article	IF	CITATIONS
37	Targeted Disruption of Myc–Max Oncoprotein Complex by a Small Molecule. ACS Chemical Biology, 2017, 12, 2715-2719.	1.6	51
38	Back to the Future: Lessons Learned in Modern Target-based and Whole-Cell Lead Optimization of Antimalarials. Current Topics in Medicinal Chemistry, 2012, 12, 473-483.	1.0	46
39	Neratinib protects pancreatic beta cells in diabetes. Nature Communications, 2019, 10, 5015.	5.8	44
40	Discovery of Tetrahydropyrazolopyrimidine Carboxamide Derivatives As Potent and Orally Active Antitubercular Agents. ACS Medicinal Chemistry Letters, 2013, 4, 451-455.	1.3	43
41	Small Molecules Targeting Mycobacterium tuberculosis Type II NADH Dehydrogenase Exhibit Antimycobacterial Activity. Angewandte Chemie - International Edition, 2018, 57, 3478-3482.	7.2	42
42	Determinants of the Inhibition of DprE1 and CYP2C9 by Antitubercular Thiophenes. Angewandte Chemie - International Edition, 2017, 56, 13011-13015.	7.2	36
43	Discovery of short-course antiwolbachial quinazolines for elimination of filarial worm infections. Science Translational Medicine, 2019, 11, .	5.8	36
44	Road Towards New Antimalarials – Overview of the Strategies and their Chemical Progress. Current Medicinal Chemistry, 2011, 18, 853-871.	1.2	35
45	Synthesis and SAR of arylaminoethyl amides as noncovalent inhibitors of cathepsin S: P3 cyclic ethers. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5112-5117.	1.0	32
46	YAP-dependent proliferation by a small molecule targeting annexin A2. Nature Chemical Biology, 2021, 17, 767-775.	3.9	31
47	Lead Optimization of Imidazopyrazines: A New Class of Antimalarial with Activity on <i>Plasmodium</i> Liver Stages. ACS Medicinal Chemistry Letters, 2014, 5, 947-950.	1.3	30
48	The ReFRAME library as a comprehensive drug repurposing library to identify mammarenavirus inhibitors. Antiviral Research, 2019, 169, 104558.	1.9	30
49	Small molecule selectively suppresses MYC transcription in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3497-3502.	3.3	28
50	Lead Identification to Clinical Candidate Selection: Drugs for Chagas Disease. Journal of Biomolecular Screening, 2015, 20, 101-111.	2.6	27
51	Rational design of a Kv1.3 channel-blocking antibody as a selective immunosuppressant. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11501-11506.	3.3	27
52	Discovery of novel 1H-imidazol-2-yl-pyrimidine-4,6-diamines as potential antimalarials. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4027-4031.	1.0	25
53	Discovery and biological evaluation of benzo[a]carbazole-based small molecule agonists of the thrombopoietin (Tpo) receptor. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5255-5258.	1.0	24
54	Arylaminoethyl carbamates as a novel series of potent and selective cathepsin S inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5107-5111.	1.0	22

ARNAB K CHATTERJEE

#	Article	IF	CITATIONS
55	Dissociated sterolâ€based liver X receptor agonists as therapeutics for chronic inflammatory diseases. FASEB Journal, 2016, 30, 2570-2579.	0.2	22
56	Discovery of inhibitors of the channel-activating protease prostasin (CAP1/PRSS8) utilizing structure-based design. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5895-5899.	1.0	18
57	Cell-Based Medicinal Chemistry Optimization of High-Throughput Screening (HTS) Hits for Orally Active Antimalarials. Part 1: Challenges in Potency and Absorption, Distribution, Metabolism, Excretion/Pharmacokinetics (ADME/PK). Journal of Medicinal Chemistry, 2013, 56, 7741-7749.	2.9	18
58	Arylaminoethyl amides as noncovalent inhibitors of cathepsin S. Part 2: Optimization of P1 and N-aryl. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1486-1490.	1.0	17
59	Synthesis and SAR of succinamide peptidomimetic inhibitors of cathepsin S. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2899-2903.	1.0	16
60	Cell-based optimization of novel benzamides as potential antimalarial leads. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6970-6974.	1.0	15
61	Discovery of highly potent, lung-localized epithelial sodium channel inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4797-4801.	1.0	13
62	Discovery and SAR studies of 3-amino-4-(phenylsulfonyl)tetrahydrothiophene 1,1-dioxides as non-electrophilic antioxidant response element (ARE) activators. Bioorganic Chemistry, 2021, 108, 104614.	2.0	5
63	Determinants of the Inhibition of DprE1 and CYP2C9 by Antitubercular Thiophenes. Angewandte Chemie, 2017, 129, 13191-13195.	1.6	1