
Christopher Blake Rodell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8218935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct 3D Printing of Shearâ€Thinning Hydrogels into Selfâ€Healing Hydrogels. Advanced Materials, 2015, 27, 5075-5079.	21.0	831
2	TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nature Biomedical Engineering, 2018, 2, 578-588.	22.5	714
3	3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking. ACS Biomaterials Science and Engineering, 2016, 2, 1743-1751.	5.2	473
4	Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nature Protocols, 2017, 12, 1521-1541.	12.0	382
5	Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-like Domains. Cell, 2018, 173, 677-692.e20.	28.9	376
6	Rational Design of Network Properties in Guest–Host Assembled and Shear-Thinning Hyaluronic Acid Hydrogels. Biomacromolecules, 2013, 14, 4125-4134.	5.4	349
7	Shearâ€Thinning Supramolecular Hydrogels with Secondary Autonomous Covalent Crosslinking to Modulate Viscoelastic Properties In Vivo. Advanced Functional Materials, 2015, 25, 636-644.	14.9	278
8	Injectable and Cytocompatible Tough Doubleâ€Network Hydrogels through Tandem Supramolecular and Covalent Crosslinking. Advanced Materials, 2016, 28, 8419-8424.	21.0	233
9	Progress in material design for biomedical applications. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14444-14451.	7.1	201
10	Supramolecular Guest–Host Interactions for the Preparation of Biomedical Materials. Bioconjugate Chemistry, 2015, 26, 2279-2289.	3.6	162
11	Reversible Control of Network Properties in Azobenzene-Containing Hyaluronic Acid-Based Hydrogels. Bioconjugate Chemistry, 2018, 29, 905-913.	3.6	132
12	Protease-degradable electrospun fibrous hydrogels. Nature Communications, 2015, 6, 6639.	12.8	126
13	Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. Journal of Clinical Investigation, 2017, 127, 899-911.	8.2	126
14	Quantitative Imaging of Tumor-Associated Macrophages and Their Response to Therapy Using ⁶⁴ Cu-Labeled Macrin. ACS Nano, 2018, 12, 12015-12029.	14.6	117
15	Injectable shear-thinning hydrogels used to deliver endothelial progenitor cells, enhance cell engraftment, and improve ischemic myocardium. Journal of Thoracic and Cardiovascular Surgery, 2015, 150, 1268-1277.	0.8	113
16	Sustained small molecule delivery from injectable hyaluronic acid hydrogels through host–guest mediated retention. Journal of Materials Chemistry B, 2015, 3, 8010-8019.	5.8	111
17	Injectable Shear-Thinning Hydrogels for Minimally Invasive Delivery to Infarcted Myocardium to Limit Left Ventricular Remodeling. Circulation: Cardiovascular Interventions, 2016, 9, .	3.9	98
18	Secondary Photocrosslinking of Injectable Shearâ€Thinning Dockâ€and‣ock Hydrogels. Advanced Healthcare Materials, 2013, 2, 1028-1036.	7.6	85

#	Article	IF	CITATIONS
19	Selective Proteolytic Degradation of Guest–Host Assembled, Injectable Hyaluronic Acid Hydrogels. ACS Biomaterials Science and Engineering, 2015, 1, 277-286.	5.2	79
20	Development of Adamantane-Conjugated TLR7/8 Agonists for Supramolecular Delivery and Cancer Immunotherapy. Theranostics, 2019, 9, 8426-8436.	10.0	65
21	Local immunotherapy via delivery of interleukin-10 and transforming growth factor Î ² antagonist for treatment of chronic kidney disease. Journal of Controlled Release, 2015, 206, 131-139.	9.9	60
22	Therapeutically reprogrammed nutrient signalling enhances nanoparticulate albumin bound drug uptake and efficacy in KRAS-mutant cancer. Nature Nanotechnology, 2021, 16, 830-839.	31.5	55
23	Delivery of interleukin-10 via injectable hydrogels improves renal outcomes and reduces systemic inflammation following ischemic acute kidney injury in mice. American Journal of Physiology - Renal Physiology, 2016, 311, F362-F372.	2.7	50
24	Polymeric materials for immune engineering: Molecular interaction to biomaterial design. Acta Biomaterialia, 2021, 133, 139-152.	8.3	30
25	Screening for new macrophage therapeutics. Theranostics, 2019, 9, 7714-7729.	10.0	26
26	A Supramolecular Nanocarrier for Delivery of Amiodarone Anti-Arrhythmic Therapy to the Heart. Bioconjugate Chemistry, 2019, 30, 733-740.	3.6	24
27	Ordered, adherent layers of nanofibers enabled by supramolecular interactions. Journal of Materials Chemistry B, 2014, 2, 8110-8115.	5.8	22
28	Evolution of hierarchical porous structures in supramolecular guest–host hydrogels. Soft Matter, 2016, 12, 7839-7847.	2.7	21
29	Visualization of Injectable Hydrogels Using Chemical Exchange Saturation Transfer MRI. ACS Biomaterials Science and Engineering, 2015, 1, 227-237.	5.2	19
30	Effects of hydrogel injection on borderzone contractility post-myocardial infarction. Biomechanics and Modeling in Mechanobiology, 2018, 17, 1533-1542.	2.8	18
31	Macrophage-Targeted Therapy Unlocks Antitumoral Cross-talk between IFNÎ ³ -Secreting Lymphocytes and IL12-Producing Dendritic Cells. Cancer Immunology Research, 2022, 10, 40-55.	3.4	18
32	Myeloid Cell-Targeted Nanocarriers Efficiently Inhibit Cellular Inhibitor of Apoptosis for Cancer Immunotherapy. Cell Chemical Biology, 2020, 27, 94-104.e5.	5.2	16
33	How hydrogel inclusions modulate the local mechanical response in early and fully formed post-infarcted myocardium. Acta Biomaterialia, 2020, 114, 296-306.	8.3	16
34	Computational sensitivity investigation of hydrogel injection characteristics for myocardial support. Journal of Biomechanics, 2017, 64, 231-235.	2.1	13
35	Applications of Macrocyclic Host Molecules in Immune Modulation and Therapeutic Delivery. Frontiers in Chemistry, 2021, 9, 658548.	3.6	12
36	Cathelicidin Related Antimicrobial Peptide (CRAMP) Enhances Bone Marrow Cell Retention and Attenuates Cardiac Dysfunction in a Mouse Model of Myocardial Infarction. Stem Cell Reviews and Reports, 2018, 14, 702-714.	5.6	11

#	Article	IF	CITATIONS
37	An ACE therapy for COVID-19. Science Translational Medicine, 2020, 12, .	12.4	10
38	Quantification of Cellular Drug Biodistribution Addresses Challenges in Evaluating In Vitro and In Vivo Encapsulated Drug Delivery. Advanced Therapeutics, 2021, 4, 2000125.	3.2	6
39	Radicals promote magnetic gel assembly. Nature, 2014, 514, 574-575.	27.8	4
40	Measurement of glomerular filtration rate reveals that subcapsular injection of shearâ€ŧhinning hyaluronic acid hydrogels does not impair kidney function in mice. Journal of Biomedical Materials Research - Part A, 2022, 110, 652-658.	4.0	3
41	Injectable Shear-Thinning Hydrogels Prevent Ischemic Mitral Regurgitation and Normalize Ventricular Flow Dynamics. Seminars in Thoracic and Cardiovascular Surgery, 2020, 32, 445-453.	0.6	1
42	NIMG-48. TLR7/8-AGONIST-LOADED NANOPARTICLES REPROGRAM TUMOR-ASSOCIATED MYELOID CELLS FOR EFFECTIVE IMMUNOTHERAPY OF EXPERIMENTAL GLIOMA AND MRI-BASED TREATMENT MONITORING. Neuro-Oncology, 2021, 23, vi139-vi140.	1.2	1
43	Tunable Blood Shunt for Neonates With Complex Congenital Heart Defects. Frontiers in Bioengineering and Biotechnology, 2021, 9, 734310.	4.1	1
44	An affinity for pure drugs. Science Translational Medicine, 2020, 12, .	12.4	0