
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8218886/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Somatic mosaicism reveals clonal distributions of neocortical development. Nature, 2022, 604, 689-696.                                                                                | 27.8 | 26        |
| 2  | All2: A tool for selecting mosaic mutations from comprehensive multi-cell comparisons. PLoS Computational Biology, 2022, 18, e1009487.                                                | 3.2  | 2         |
| 3  | Antibodies From Children With PANDAS Bind Specifically to Striatal Cholinergic Interneurons and Alter Their Activity. American Journal of Psychiatry, 2021, 178, 48-64.               | 7.2  | 43        |
| 4  | PsychENCODE and beyond: transcriptomics and epigenomics of brain development and organoids.<br>Neuropsychopharmacology, 2021, 46, 70-85.                                              | 5.4  | 15        |
| 5  | The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nature Neuroscience, 2021, 24, 176-185. | 14.8 | 73        |
| 6  | Cell-to-Cell Adhesion and Neurogenesis in Human Cortical Development: A Study Comparing 2D<br>Monolayers with 3D Organoid Cultures. Stem Cell Reports, 2021, 16, 264-280.             | 4.8  | 16        |
| 7  | Fibroblast Growth Factor 2 Implicated in Childhood Anxiety and Depression Symptoms. Journal of Affective Disorders, 2021, 282, 611-616.                                               | 4.1  | 6         |
| 8  | Comprehensive identification of somatic nucleotide variants in human brain tissue. Genome Biology, 2021, 22, 92.                                                                      | 8.8  | 26        |
| 9  | Early developmental asymmetries in cell lineage trees in living individuals. Science, 2021, 371, 1245-1248.                                                                           | 12.6 | 39        |
| 10 | Role of SHH in Patterning Human Pluripotent Cells towards Ventral Forebrain Fates. Cells, 2021, 10,<br>914.                                                                           | 4.1  | 10        |
| 11 | Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia.<br>Nature Neuroscience, 2021, 24, 186-196.                                        | 14.8 | 22        |
| 12 | SCELLECTOR: ranking amplification bias in single cells using shallow sequencing. BMC Bioinformatics, 2020, 21, 521.                                                                   | 2.6  | 3         |
| 13 | Complex mosaic structural variations in human fetal brains. Genome Research, 2020, 30, 1695-1704.                                                                                     | 5.5  | 21        |
| 14 | Cell Lineage Tracing and Cellular Diversity in Humans. Annual Review of Genomics and Human<br>Genetics, 2020, 21, 101-116.                                                            | 6.2  | 10        |
| 15 | Induced pluripotent stem cells as models of human neurodevelopmental disorders. , 2020, , 99-127.                                                                                     |      | 0         |
| 16 | The role of somatic mosaicism in brain disease. Current Opinion in Genetics and Development, 2020, 65, 84-90.                                                                         | 3.3  | 20        |
| 17 | One for All: A Pooled Approach to Classify Functional Impacts of Multiple Mutations. Cell Stem Cell, 2020, 27, 1-3.                                                                   | 11.1 | 13        |
|    |                                                                                                                                                                                       |      |           |

18 Tourette syndrome. , 2020, , 675-686.

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Breakthrough Moments: Yoshiki Sasai's Discoveries in the Third Dimension. Cell Stem Cell, 2019, 24,<br>837-838.                                                                                                   | 11.1 | 8         |
| 20 | Approaches and Methods for Variant Analysis in the Genome of a Single Cell. Healthy Ageing and Longevity, 2019, , 203-228.                                                                                        | 0.2  | 1         |
| 21 | Loss of TrkB Signaling in Parvalbumin-Expressing Basket Cells Results in Network Activity Disruption and Abnormal Behavior. Cerebral Cortex, 2018, 28, 3399-3413.                                                 | 2.9  | 32        |
| 22 | Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis.<br>Science, 2018, 359, 550-555.                                                                                     | 12.6 | 216       |
| 23 | Transcriptome and epigenome landscape of human cortical development modeled in organoids.<br>Science, 2018, 362, .                                                                                                | 12.6 | 220       |
| 24 | Integrative functional genomic analysis of human brain development and neuropsychiatric risks.<br>Science, 2018, 362, .                                                                                           | 12.6 | 516       |
| 25 | Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 2018, 362, .                                                                                                 | 12.6 | 805       |
| 26 | Comprehensive functional genomic resource and integrative model for the human brain. Science, 2018, 362, .                                                                                                        | 12.6 | 618       |
| 27 | Fibroblast growth factor 2 is necessary for the antidepressant effects of fluoxetine. PLoS ONE, 2018, 13, e0204980.                                                                                               | 2.5  | 28        |
| 28 | iPSC-derived neurons profiling reveals GABAergic circuit disruption and acetylated α-tubulin defect<br>which improves after iHDAC6 treatment in Rett syndrome. Experimental Cell Research, 2018, 368,<br>225-235. | 2.6  | 36        |
| 29 | One thousand somatic SNVs per skin fibroblast cell set baseline of mosaic mutational load with patterns that suggest proliferative origin. Genome Research, 2017, 27, 512-523.                                    | 5.5  | 64        |
| 30 | Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nature Reviews<br>Neurology, 2017, 13, 265-278.                                                                                  | 10.1 | 135       |
| 31 | Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism<br>Network. Science, 2017, 356, .                                                                              | 12.6 | 206       |
| 32 | Principles and Approaches for Discovery and Validation of Somatic Mosaicism in the Human Brain.<br>Neuromethods, 2017, , 3-24.                                                                                    | 0.3  | 1         |
| 33 | Transcriptome Analysis of the Human Striatum in Tourette Syndrome. Biological Psychiatry, 2016, 79, 372-382.                                                                                                      | 1.3  | 160       |
| 34 | Fibroblast Growth Factor 2 Modulates Hypothalamic Pituitary Axis Activity and Anxiety Behavior<br>Through Glucocorticoid Receptors. Biological Psychiatry, 2016, 80, 479-489.                                     | 1.3  | 49        |
| 35 | Kv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating. Cell, 2016, 165, 434-448.                                                                            | 28.9 | 57        |
| 36 | Altering the course of schizophrenia: progress and perspectives. Nature Reviews Drug Discovery, 2016,<br>15, 485-515.                                                                                             | 46.4 | 410       |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Imbalance of excitatory/inhibitory synaptic protein expression in iPSC-derived neurons from FOXG1+/â^' patients and in foxg1+/â^' mice. European Journal of Human Genetics, 2016, 24, 871-880.                                                 | 2.8  | 54        |
| 38 | Altered expression of neuropeptides in FoxG1-null heterozygous mutant mice. European Journal of Human Genetics, 2016, 24, 252-257.                                                                                                             | 2.8  | 10        |
| 39 | Creating Patient-Specific Neural Cells for the InÂVitro Study of Brain Disorders. Stem Cell Reports, 2015, 5, 933-945.                                                                                                                         | 4.8  | 72        |
| 40 | Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral<br>manifestations of Tourette syndrome. Proceedings of the National Academy of Sciences of the United<br>States of America, 2015, 112, 893-898. | 7.1  | 137       |
| 41 | Contribution of maternal oxygenic state to the effects of chronic postnatal hypoxia on mouse body and brain development. Neuroscience Letters, 2015, 604, 12-17.                                                                               | 2.1  | 7         |
| 42 | FOXG1-Dependent Dysregulation of GABA/Glutamate Neuron Differentiation in Autism Spectrum Disorders. Cell, 2015, 162, 375-390.                                                                                                                 | 28.9 | 894       |
| 43 | How Animal Models Inform Child and Adolescent Psychiatry. Journal of the American Academy of<br>Child and Adolescent Psychiatry, 2015, 54, 352-359.                                                                                            | 0.5  | 13        |
| 44 | The PsychENCODE project. Nature Neuroscience, 2015, 18, 1707-1712.                                                                                                                                                                             | 14.8 | 371       |
| 45 | Editorial commentary: "What does immunology have to do with brain development and neuropsychiatric disorders?― Brain Research, 2015, 1617, 1-6.                                                                                                | 2.2  | 13        |
| 46 | Tourette Syndrome. , 2015, , 1311-1320.                                                                                                                                                                                                        |      | 0         |
| 47 | The use of stem cells to study autism spectrum disorder. Yale Journal of Biology and Medicine, 2015, 88, 5-16.                                                                                                                                 | 0.2  | 11        |
| 48 | Neurobiology of premature brain injury. Nature Neuroscience, 2014, 17, 341-346.                                                                                                                                                                | 14.8 | 240       |
| 49 | Neurogenesis and Maturation in Neonatal Brain Injury. Clinics in Perinatology, 2014, 41, 229-239.                                                                                                                                              | 2.1  | 28        |
| 50 | Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nature Neuroscience, 2014, 17, 908-910.                                                                                                                   | 14.8 | 268       |
| 51 | Fgfr1 Inactivation in the Mouse Telencephalon Results in Impaired Maturation of Interneurons Expressing Parvalbumin. PLoS ONE, 2014, 9, e103696.                                                                                               | 2.5  | 19        |
| 52 | Hypoxia-Induced Developmental Delays of Inhibitory Interneurons Are Reversed by Environmental<br>Enrichment in the Postnatal Mouse Forebrain. Journal of Neuroscience, 2013, 33, 13375-13387.                                                  | 3.6  | 75        |
| 53 | Cortical Gyrification Induced by Fibroblast Growth Factor 2 in the Mouse Brain. Journal of Neuroscience, 2013, 33, 10802-10814.                                                                                                                | 3.6  | 85        |
| 54 | Prenatal stress delays inhibitory neuron progenitor migration in the developing neocortex.<br>Psychoneuroendocrinology, 2013, 38, 509-521.                                                                                                     | 2.7  | 71        |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Functional genomic screen of human stem cell differentiation reveals pathways involved in<br>neurodevelopment and neurodegeneration. Proceedings of the National Academy of Sciences of the<br>United States of America, 2013, 110, 12361-12366. | 7.1  | 23        |
| 56 | Age-related changes of gene expression in the neocortex: Preliminary data on RNA-Seq of the transcriptome in three functionally distinct cortical areas. Development and Psychopathology, 2012, 24, 1427-1442.                                   | 2.3  | 22        |
| 57 | Modeling human cortical development in vitro using induced pluripotent stem cells. Proceedings of the United States of America, 2012, 109, 12770-12775.                                                                                          | 7.1  | 442       |
| 58 | Environmental Enrichment Increases the GFAP+ Stem Cell Pool and Reverses Hypoxia-Induced Cognitive Deficits in Juvenile Mice. Journal of Neuroscience, 2012, 32, 8930-8939.                                                                      | 3.6  | 50        |
| 59 | Neurobiology meets genomic science: The promise of human-induced pluripotent stem cells.<br>Development and Psychopathology, 2012, 24, 1443-1451.                                                                                                | 2.3  | 6         |
| 60 | Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature, 2012, 492, 438-442.                                                                                                                              | 27.8 | 355       |
| 61 | Oligodendrocyte Regeneration after Neonatal Hypoxia Requires FoxO1-Mediated<br>p27 <sup>Kip1</sup> Expression. Journal of Neuroscience, 2012, 32, 14775-14793.                                                                                   | 3.6  | 82        |
| 62 | Learning and Memory Depend on Fibroblast Growth Factor Receptor 2 Functioning in Hippocampus.<br>Biological Psychiatry, 2012, 71, 1090-1098.                                                                                                     | 1.3  | 37        |
| 63 | Impaired motor coordination and disrupted cerebellar architecture in Fgfr1 and Fgfr2 double knockout mice. Brain Research, 2012, 1460, 12-24.                                                                                                    | 2.2  | 25        |
| 64 | Toward a Novel Endogenous Anxiolytic Factor, Fibroblast Growth Factor 2. Biological Psychiatry, 2011, 69, 508-509.                                                                                                                               | 1.3  | 7         |
| 65 | Induced pluripotent stem cells: A new tool to confront the challenge of neuropsychiatric disorders.<br>Neuropharmacology, 2011, 60, 1355-1363.                                                                                                   | 4.1  | 46        |
| 66 | Annual Research Review: The promise of stem cell research for neuropsychiatric disorders. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2011, 52, 504-516.                                                                  | 5.2  | 33        |
| 67 | FGF Signaling Expands Embryonic Cortical Surface Area by Regulating Notch-Dependent Neurogenesis.<br>Journal of Neuroscience, 2011, 31, 15604-15617.                                                                                             | 3.6  | 85        |
| 68 | Cortical Glial Fibrillary Acidic Protein-Positive Cells Generate Neurons after Perinatal Hypoxic Injury.<br>Journal of Neuroscience, 2011, 31, 9205-9221.                                                                                        | 3.6  | 50        |
| 69 | Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with<br>Tourette syndrome. Journal of Comparative Neurology, 2010, 518, 277-291.                                                                     | 1.6  | 396       |
| 70 | Exciting news from the adult mouse subventricular zone. Frontiers in Neuroscience, 2010, 4, 23.                                                                                                                                                  | 2.8  | 2         |
| 71 | Neural stem cell regulation, fibroblast growth factors, and the developmental origins of neuropsychiatric disorders. Frontiers in Neuroscience, 2010, 4, .                                                                                       | 2.8  | 48        |
| 72 | <i>Fgfr2</i> Is Required for the Development of the Medial Prefrontal Cortex and Its Connections with Limbic Circuits. Journal of Neuroscience, 2010, 30, 5590-5602.                                                                             | 3.6  | 66        |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Pyramidal Neurons Are Generated from Oligodendroglial Progenitor Cells in Adult Piriform Cortex.<br>Journal of Neuroscience, 2010, 30, 12036-12049.                                                                     | 3.6  | 157       |
| 74 | Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates. Molecular and Cellular Neurosciences, 2010, 44, 362-373.                                                      | 2.2  | 33        |
| 75 | <i>Fgfr1</i> Is Required for Cortical Regeneration and Repair after Perinatal Hypoxia. Journal of Neuroscience, 2009, 29, 1202-1211.                                                                                    | 3.6  | 79        |
| 76 | Hypoxic Injury during Neonatal Development in Murine Brain: Correlation between In Vivo DTI Findings and Behavioral Assessment. Cerebral Cortex, 2009, 19, 2891-2901.                                                   | 2.9  | 49        |
| 77 | Regulation of Cerebral Cortical Size and Neuron Number by Fibroblast Growth Factors: Implications for Autism. Journal of Autism and Developmental Disorders, 2009, 39, 511-520.                                         | 2.7  | 70        |
| 78 | Precursors with Glial Fibrillary Acidic Protein Promoter Activity Transiently Generate GABA<br>Interneurons in the Postnatal Cerebellum. Stem Cells, 2009, 27, 1152-1163.                                               | 3.2  | 36        |
| 79 | Modeling premature brain injury and recovery. International Journal of Developmental Neuroscience, 2009, 27, 863-871.                                                                                                   | 1.6  | 74        |
| 80 | Increased Brain Size in Autism—What It Will Take to Solve a Mystery. Biological Psychiatry, 2009, 66,<br>313-315.                                                                                                       | 1.3  | 24        |
| 81 | Decrease in excitatory neurons, astrocytes and proliferating progenitors in the cerebral cortex of mice lacking exon 3 from the Fgf2 gene. BMC Neuroscience, 2008, 9, 94.                                               | 1.9  | 11        |
| 82 | Deficiency in Inhibitory Cortical Interneurons Associates with Hyperactivity in Fibroblast Growth<br>Factor Receptor 1 Mutant Mice. Biological Psychiatry, 2008, 63, 953-962.                                           | 1.3  | 31        |
| 83 | Astroglial Cells in Development, Regeneration, and Repair. Neuroscientist, 2007, 13, 173-185.                                                                                                                           | 3.5  | 48        |
| 84 | Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate<br>gyrus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104,<br>20558-20563.     | 7.1  | 364       |
| 85 | Cortical neurogenesis enhanced by chronic perinatal hypoxia. Experimental Neurology, 2006, 199, 77-91.                                                                                                                  | 4.1  | 139       |
| 86 | Midline radial glia translocation and corpus callosum formation require FGF signaling. Nature<br>Neuroscience, 2006, 9, 787-797.                                                                                        | 14.8 | 145       |
| 87 | Annotation: Tourette syndrome: a relentless drumbeat - driven by misguided brain oscillations.<br>Journal of Child Psychology and Psychiatry and Allied Disciplines, 2006, 47, 537-550.                                 | 5.2  | 108       |
| 88 | Early Postnatal Astroglial Cells Produce Multilineage Precursors and Neural Stem Cells In Vivo.<br>Journal of Neuroscience, 2006, 26, 8609-8621.                                                                        | 3.6  | 220       |
| 89 | Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette<br>syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102,<br>13307-13312. | 7.1  | 476       |
| 90 | Otx2 Regulates Subtype Specification and Neurogenesis in the Midbrain. Journal of Neuroscience, 2005, 25, 4856-4867.                                                                                                    | 3.6  | 133       |

| #   | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Fibroblast Growth Factor Receptor 1 Is Required for the Proliferation of Hippocampal Progenitor<br>Cells and for Hippocampal Growth in Mouse. Journal of Neuroscience, 2004, 24, 6057-6069.                              | 3.6  | 128       |
| 92  | Loss of Glutamatergic Pyramidal Neurons in Frontal and Temporal Cortex Resulting from Attenuation of FGFR1 Signaling Is Associated with Spontaneous Hyperactivity in Mice. Journal of Neuroscience, 2004, 24, 2247-2258. | 3.6  | 77        |
| 93  | Chronic neonatal hypoxia leads to long term decreases in the volume and cell number of the rat cerebral cortex. Seminars in Perinatology, 2004, 28, 379-388.                                                             | 2.5  | 40        |
| 94  | Fibroblast Growth Factor 2 Is Required for Maintaining the Neural Stem Cell Pool in the Mouse Brain<br>Subventricular Zone. Developmental Neuroscience, 2004, 26, 181-196.                                               | 2.0  | 172       |
| 95  | Fibroblast Growth Factor 2 Is Necessary for the Growth of Glutamate Projection Neurons in the Anterior Neocortex. Journal of Neuroscience, 2002, 22, 863-875.                                                            | 3.6  | 77        |
| 96  | Stem Cells in Neurodevelopment and Plasticity. Neuropsychopharmacology, 2001, 25, 805-815.                                                                                                                               | 5.4  | 47        |
| 97  | Basic Fibroblast Growth Factor (Fgf2) Is Necessary for Cell Proliferation and Neurogenesis in the Developing Cerebral Cortex. Journal of Neuroscience, 2000, 20, 5012-5023.                                              | 3.6  | 384       |
| 98  | Stem Cells and Neuronal Progenitors and Their Diversity in the CNS: Are Time and Place Important?. Neuroscientist, 2000, 6, 338-352.                                                                                     | 3.5  | 2         |
| 99  | Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis.<br>Nature Neuroscience, 1999, 2, 246-253.                                                                                 | 14.8 | 332       |
| 100 | 6 Fibroblast Growth Factor Signaling Regulates Growth and Morphogenesis at Multiple Steps during<br>Brain Development. Current Topics in Developmental Biology, 1999, 46, 179-200.                                       | 2.2  | 77        |
| 101 | Identification, Chromosomal Assignment, and Expression Analysis of the Human<br>Homeodomain-Containing Gene Orthopedia (OTP). Genomics, 1999, 60, 96-104.                                                                | 2.9  | 28        |
| 102 | Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes and Development, 1999, 13, 2787-2800.                                                   | 5.9  | 175       |
| 103 | Dlx-2 homeobox gene controls neuronal differentiation in primary cultures of developing basal ganglia. Journal of Molecular Neuroscience, 1997, 8, 93-113.                                                               | 2.3  | 22        |
| 104 | Characterization and Sequence Analysis of the Human Homeobox-Containing GeneGBX2. Genomics, 1996, 31, 335-342.                                                                                                           | 2.9  | 16        |
| 105 | Basic Fibroblast Growth Factor Increases the Number of Excitatory Neurons Containing Glutamate in the Cerebral Cortex. Cerebral Cortex, 1995, 5, 64-78.                                                                  | 2.9  | 66        |
| 106 | Excitatory amino acid receptors in glial progenitor cells: Molecular and functional properties. Glia, 1994, 11, 94-101.                                                                                                  | 4.9  | 98        |
| 107 | Differential induction of immediate early genes by excitatory amino acid receptor types in primary cultures of cortical and striatal neurons. Molecular Brain Research, 1992, 12, 233-241.                               | 2.3  | 119       |
| 108 | Modulation of Protein Kinase C Translocation by Excitatory and Inhibitory Amino Acids in Primary Cultures of Neurons. Journal of Neurochemistry, 1991, 57, 391-396.                                                      | 3.9  | 73        |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Primary cultures of corticostriatal cells from newborn rats: A model to study muscarinic receptor subtypes regulation and function. Journal of Molecular Neuroscience, 1990, 2, 143-153.                                          | 2.3 | 10        |
| 110 | Subcellular Location and Neuronal Release of Diazepam Binding Inhibitor. Journal of Neurochemistry, 1987, 48, 1093-1102.                                                                                                          | 3.9 | 60        |
| 111 | GABA-Modulin: A Synaptosomal Basic Protein that Differs from Small Myelin Basic Protein of Rat<br>Brain. Journal of Neurochemistry, 1985, 44, 278-290.                                                                            | 3.9 | 19        |
| 112 | Residual benzodiazepine (BZ) binding in the cortex ofpcd mutant cerebella and qualitative BZ binding<br>in the deep cerebellar nuclei of control and mutant mice: an autoradiographic study. Brain Research,<br>1985, 343, 70-78. | 2.2 | 17        |
| 113 | In vivo modulation of brain dop amine recognition sites: A possible model for emission computed tomography studies. Neuropharmacology, 1983, 22, 791-795.                                                                         | 4.1 | 13        |