
Stefan Wilhelm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8218718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 2016, 1, .	23.3	3,393
2	The entry of nanoparticles into solid tumours. Nature Materials, 2020, 19, 566-575.	13.3	1,036
3	Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Advanced Drug Delivery Reviews, 2019, 143, 68-96.	6.6	561
4	Quantifying the Ligand-Coated Nanoparticle Delivery to Cancer Cells in Solid Tumors. ACS Nano, 2018, 12, 8423-8435.	7.3	444
5	Elimination Pathways of Nanoparticles. ACS Nano, 2019, 13, 5785-5798.	7.3	343
6	Perspectives for Upconverting Nanoparticles. ACS Nano, 2017, 11, 10644-10653.	7.3	246
7	Upconversion Nanoparticles: From Hydrophobic to Hydrophilic Surfaces. Accounts of Chemical Research, 2014, 47, 3481-3493.	7.6	225
8	Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability. Nanoscale, 2015, 7, 1403-1410.	2.8	210
9	Nanoparticle Toxicology. Annual Review of Pharmacology and Toxicology, 2021, 61, 269-289.	4.2	163
10	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	15.6	149
11	Multicolor Upconversion Nanoparticles for Protein Conjugation. Theranostics, 2013, 3, 239-248.	4.6	92
12	Three-Dimensional Optical Mapping of Nanoparticle Distribution in Intact Tissues. ACS Nano, 2016, 10, 5468-5478.	7.3	73
13	Nanoparticle Interactions with the Tumor Microenvironment. Bioconjugate Chemistry, 2019, 30, 2247-2263.	1.8	66
14	Three-Dimensional Imaging of Transparent Tissues via Metal Nanoparticle Labeling. Journal of the American Chemical Society, 2017, 139, 9961-9971.	6.6	60
15	Strategies for Delivering Nanoparticles across Tumor Blood Vessels. Advanced Functional Materials, 2021, 31, 2007363.	7.8	46
16	Synthesis of Patient-Specific Nanomaterials. Nano Letters, 2019, 19, 116-123.	4.5	40
17	Spectrally Matched Upconverting Luminescent Nanoparticles for Monitoring Enzymatic Reactions. ACS Applied Materials & Interfaces, 2014, 6, 15427-15433.	4.0	39
18	Exploring Passive Clearing for 3D Optical Imaging of Nanoparticles in Intact Tissues. Bioconjugate Chemistry, 2017, 28, 253-259.	1.8	39

STEFAN WILHELM

#	Article	IF	CITATIONS
19	Passive targeting in nanomedicine: fundamental concepts, body interactions, and clinical potential. , 2020, , 37-53.		39
20	Reply to "Evaluation of nanomedicines: stick to the basics― Nature Reviews Materials, 2016, 1, .	23.3	35
21	Switching the intracellular pathway and enhancing the therapeutic efficacy of small interfering RNA by auroliposome. Science Advances, 2020, 6, eaba5379.	4.7	35
22	Gold nanoparticles inhibit activation of cancer-associated fibroblasts by disrupting communication from tumor and microenvironmental cells. Bioactive Materials, 2021, 6, 326-332.	8.6	31
23	Liposome Imaging in Optically Cleared Tissues. Nano Letters, 2020, 20, 1362-1369.	4.5	28
24	Exploring Maleimide-Based Nanoparticle Surface Engineering to Control Cellular Interactions. ACS Applied Nano Materials, 2020, 3, 2421-2429.	2.4	27
25	Nanoparticle Surface Engineering with Heparosan Polysaccharide Reduces Serum Protein Adsorption and Enhances Cellular Uptake. Nano Letters, 2022, 22, 2103-2111.	4.5	27
26	Enzyme-induced modulation of the emission of upconverting nanoparticles: Towards a new sensing scheme for glucose. Biosensors and Bioelectronics, 2014, 59, 14-20.	5.3	24
27	Assessing nanoparticle colloidal stability with single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Analytical and Bioanalytical Chemistry, 2020, 412, 5205-5216.	1.9	22
28	Quantifying Chemical Composition and Reaction Kinetics of Individual Colloidally Dispersed Nanoparticles. Nano Letters, 2022, 22, 294-301.	4.5	22
29	A reagentless enzymatic fluorescent biosensor for glucose based on upconverting glasses, as excitation source, and chemically modified glucose oxidase. Talanta, 2016, 160, 586-591.	2.9	13
30	Conductive and injectable hyaluronic acid/gelatin/gold nanorod hydrogels for enhanced surgical translation and bioprinting. Journal of Biomedical Materials Research - Part A, 2022, 110, 365-382.	2.1	13
31	Label-Free Differentiation of Cancer and Non-Cancer Cells Based on Machine-Learning-Algorithm-Assisted Fast Raman Imaging. Biosensors, 2022, 12, 250.	2.3	9
32	Absolute Quantification of Nanoparticle Interactions with Individual Human B Cells by Single Cell Mass Spectrometry. Nano Letters, 2022, 22, 4192-4199.	4.5	9
33	Composite particles with magnetic properties, near-infrared excitation, and far-red emission for luminescence-based oxygen sensing. Microsystems and Nanoengineering, 2015, 1, .	3.4	8
34	Physical Forces in Glioblastoma Migration: A Systematic Review. International Journal of Molecular Sciences, 2022, 23, 4055.	1.8	7
35	Magnetic nanosensor particles in luminescence upconversion capability. Angewandte Chemie - International Edition, 2011, 50, A59-62.	7.2	5
36	Disabling partners in crime: Gold nanoparticles disrupt multicellular communications within the tumor microenvironment to inhibit ovarian tumor aggressiveness. Materials Today, 2022, , .	8.3	5

#	Article	IF	CITATIONS
37	Opto-chemical micro-capillary clocks. Mikrochimica Acta, 2010, 171, 211-216.	2.5	4
38	A Cold Nanoparticle-based Lab Experiment Sequence to Enhance Learning in Biomedical Nanotechnology at the Undergraduate Level. , 0, , .		0