
Yufeng Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8218232/publications.pdf Version: 2024-02-01

YUEENC ZHENC

#	Article	IF	CITATIONS
1	Role of ω phase in the formation of extremely refined intragranular Î \pm precipitates in metastable β-titanium alloys. Acta Materialia, 2016, 103, 850-858.	3.8	201
2	Modifying transformation pathways in high entropy alloys or complex concentrated alloys via thermo-mechanical processing. Acta Materialia, 2018, 153, 169-185.	3.8	169
3	Tensile yield strength of a single bulk Al0.3CoCrFeNi high entropy alloy can be tuned from 160â€ [–] MPa to 1800†MPa. Scripta Materialia, 2019, 162, 18-23.	2.6	138
4	Non-classical homogeneous precipitation mediated by compositional fluctuations in titanium alloys. Acta Materialia, 2012, 60, 6247-6256.	3.8	129
5	Phase inversion in a two-phase, BCC+B2, refractory high entropy alloy. Acta Materialia, 2020, 185, 89-97.	3.8	128
6	The effect of alloy composition on instabilities in the β phase of titanium alloys. Scripta Materialia, 2016, 116, 49-52.	2.6	111
7	The indirect influence of the ω phase on the degree of refinement of distributions of the α phase in metastable β-Titanium alloys. Acta Materialia, 2016, 103, 165-173.	3.8	111
8	The role of the ω phase on the non-classical precipitation of the α phase in metastable β-titanium alloys. Scripta Materialia, 2016, 111, 81-84.	2.6	93
9	Pseudospinodal mechanism for fine α/β microstructures in β-Ti alloys. Acta Materialia, 2014, 64, 188-197.	3.8	81
10	Coupled experimental and computational investigation of omega phase evolution in a high misfit titanium-vanadium alloy. Acta Materialia, 2017, 130, 215-228.	3.8	75
11	A nano-scale instability in the β phase of dilute Ti–Mo alloys. Scripta Materialia, 2016, 116, 131-134.	2.6	74
12	Determination of the structure of α-β interfaces in metastable β-Ti alloys. Acta Materialia, 2018, 150, 25-39.	3.8	65
13	Phase stability and microstructure evolution in a ductile refractory high entropy alloy Al10Nb15Ta5Ti30Zr40. Materialia, 2020, 9, 100569.	1.3	61
14	Influence of ordered L12 precipitation on strain-rate dependent mechanical behavior in a eutectic high entropy alloy. Scientific Reports, 2019, 9, 6371.	1.6	59
15	Characterization of a previously unidentified ordered orthorhombic metastable phase in Ti-5Al-5Mo-5V-3Cr. Scripta Materialia, 2016, 113, 202-205.	2.6	53
16	Shuffle-nanodomain regulated strain glass transition in Ti-24Nb-4Zr-8Sn alloy. Acta Materialia, 2020, 186, 415-424.	3.8	52
17	The role of cuboidal ï‰ precipitates on α precipitation in a Ti-20V alloy. Scripta Materialia, 2016, 123, 81-85.	2.6	45
18	Nano-scale structural non-uniformities in gum like Ti-24Nb-4Zr-8Sn metastable β-Ti alloy. Scripta Materialia, 2019, 158, 95-99.	2.6	45

YUFENG ZHENG

#	Article	IF	CITATIONS
19	The role of nano-scaled structural non-uniformities on deformation twinning and stress-induced transformation in a cold rolled multifunctional β-titanium alloy. Scripta Materialia, 2020, 177, 181-185.	2.6	45
20	Atomic structure and elemental segregation behavior of creep defects in a Co-Al-W-based single crystal superalloys under high temperature and low stress. Acta Materialia, 2020, 190, 16-28.	3.8	45
21	Ϊ‰-Assisted Î \pm nucleation in a metastable Î 2 titanium alloy. Scripta Materialia, 2019, 171, 62-66.	2.6	41
22	Exceptional increase in the creep life of magnesium rare-earth alloys due to localized bond stiffening. Nature Communications, 2017, 8, 2000.	5.8	36
23	The influence of aluminum and oxygen additions on intrinsic structural instabilities in titanium-molybdenum alloys. Scripta Materialia, 2018, 152, 150-153.	2.6	34
24	Role of copper on L12 precipitation strengthened fcc based high entropy alloy. Materialia, 2019, 6, 100282.	1.3	31
25	Shuffle-induced modulated structure and heating-induced ordering in the metastable β-titanium alloy, Ti-5Al-5Mo-5V-3Cr. Scripta Materialia, 2020, 176, 7-11.	2.6	29
26	On the Thermal Stability of Dislocation Cellular Structures in Additively Manufactured Austenitic Stainless Steels: Roles of Heavy Element Segregation and Stacking Fault Energy. Jom, 2020, 72, 4232-4243.	0.9	28
27	Enhanced mechanical properties of Ti-5Al-5Mo-5V-3Cr-1Zr by bimodal lamellar precipitate microstructures via two-step aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 829, 142117.	2.6	28
28	Grain boundary segregation and its implications regarding the formation of the grain boundary α phase in the metastable l²-Titanium Ti–5Al–5Mo–5V–3Cr alloy. Scripta Materialia, 2022, 207, 114320.	2.6	28
29	Integrated Computational Materials Engineering (ICME) Approach to Design of Novel Microstructures for Ti-Alloys. Jom, 2014, 66, 1287-1298.	0.9	27
30	Plasticity assisted redistribution of solutes leading to topological inversion during creep of superalloys. Scripta Materialia, 2020, 186, 287-292.	2.6	26
31	Intrinsic coupling between twinning plasticity and transformation plasticity in metastable β Ti-alloys: A symmetry and pathway analysis. Acta Materialia, 2020, 196, 488-504.	3.8	24
32	Strain states and unique properties in cold-rolled TiNi shape memory alloys. Acta Materialia, 2022, 231, 117890.	3.8	24
33	Novel deformation twinning system in a cold rolled high-strength metastable-β Ti-5Al-5V-5Mo-3Cr-0.5Fe alloy. Materialia, 2020, 9, 100614.	1.3	21
34	Solution-processed vanadium oxides as a hole-transport layer for Sb2Se3 thin-film solar cells. Solar Energy, 2022, 231, 1-7.	2.9	17
35	Nucleation and growth of α phase in a metastable β-Titanium Ti-5Al-5Mo-5V-3Cr alloy: Influence from the nano-scale, ordered-orthorhombic O″ phase and α compositional evolution. Scripta Materialia, 2021, 194, 113672.	2.6	15
36	Enhanced Efficiency and Stability in Sb ₂ S ₃ Seed Layer Buffered Sb ₂ Se ₃ Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	13

YUFENG ZHENG

#	Article	IF	CITATIONS
37	Precipitation in nanostructured alloys: A brief review. MRS Bulletin, 2021, 46, 250-257.	1.7	11
38	On the Influence of Athermal ω and α Phase Instabilities on the Scale of Precipitation of the α Phase in Metastable β-Ti Alloys. Jom, 2016, 68, 1343-1349.	0.9	8
39	Fine scale alpha precipitation in Ti-19at.%v in the absence of influence from omega precipitates. Scripta Materialia, 2021, 196, 113766.	2.6	8
40	Selective laser melting of graphene oxide–reinforced Ti–48Al–2Cr–2Nb: Improved manufacturability and mechanical strength. Journal of Materials Research, 2020, 35, 1998-2005.	1.2	7
41	Investigation of a nano-scale, incommensurate, modulated domain in a Ti-Fe alloy. Scripta Materialia, 2018, 154, 220-224.	2.6	6
42	Characterization of the Interfacial Structure of Coarse α Precipitates in a Metastable β-Ti Alloy Ti-5Al-5Mo-5V-3Cr. Jom, 2019, 71, 2291-2295.	0.9	6
43	Recent Advances in the Design of Novel βâ€ītanium Alloys Using Integrated Theory, Computer Simulation, and Advanced Characterization. Advanced Engineering Materials, 2021, 23, 2100152.	1.6	6
44	Interfacial engineering with NiOx nanofibers as hole transport layer for carbon-based perovskite solar cells. Solar Energy, 2021, 230, 591-597.	2.9	6
45	Origin of morphological variation of grain boundary precipitates in titanium alloys. Scripta Materialia, 2022, 214, 114651.	2.6	6
46	Interface characteristics in an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>+titanium alloy. Physical Review Materials, 2020, 4, .</mml:mo></mml:mrow></mml:math 	ıo> ora ml:r	ni> Ĵ ²
47	Three-Dimensional Characterization of Selective Laser Melted Graphene Oxide-Reinforced Ti-48Al-2Cr-2Nb Alloy. Jom, 2021, 73, 1795-1803.	0.9	4
48	Twinning path determined by broken symmetry: A revisit to deformation twinning in hexagonal close-packed titanium and zirconium. Physical Review Materials, 2020, 4, .	0.9	3
49	Quasiâ€Linear Superelasticity with Ultralow Modulus in Tensile Cyclic Deformed TiNi Strain Glass. Advanced Engineering Materials, 2022, 24, .	1.6	3
50	Pathways to Titanium Martensite. Transactions of the Indian Institute of Metals, 2022, 75, 1051-1068.	0.7	3
51	The Role of High-Index Twinning on Hierarchical α Microstructure in a Metastable β Ti-5Al-5Mo-5V-3Cr Alloy. Jom, 2021, 73, 2303-2311.	0.9	2
52	Investigation of Possible Nucleation Mechanisms for Producing an Ultra-Refined Alpha Phase Microstructure in Beta Titanium Alloys Using High-Resolution Electron Microscopy and 3D Atom Probe Tomography. Microscopy and Microanalysis, 2014, 20, 960-961.	0.2	1
53	Exploration of Novel Ordering Mechanism in Titanium Alloys Using Atom Probe Tomography and Aberration-corrected Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2020, 26, 2078-2079.	0.2	1
54	Exploration of Nano-scale Structural Instabilities in Metastable β Titanium Alloys Using Advanced Electron Microscopy. MATEC Web of Conferences, 2020, 321, 12001.	0.1	1

YUFENG ZHENG

#	Article	IF	CITATIONS
55	Characterization of Various Interfaces Structure in a Titanium Alloy Using Aberration-Corrected Scanning Transmission Electron Microscope. Microscopy and Microanalysis, 2015, 21, 1517-1518.	0.2	0
56	Characterization of Nano-scale Instabilities in Titanium Alloys Using Aberration-Corrected Scanning Transmission Electron Microscope. Microscopy and Microanalysis, 2016, 22, 1270-1271.	0.2	0
57	Characterization of Alpha/Beta Interface Structure in a Titanium Alloy Using Aberration-Corrected Scanning Transmission Electron Microscope. Microscopy and Microanalysis, 2016, 22, 1974-1975.	0.2	Ο
58	Exploration of Novel Nano-scale Instabilities in Metastable Beta Titanium Alloys Using Transmission Electron Microscopy and Aberration-Corrected Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2019, 25, 2276-2277.	0.2	0
59	Three-dimensional Characterization of Selective Laser Melted Graphene Oxide-Reinforced Ti-48Al-2Cr-2Nb Alloy using FIB-SEM Tomography. Microscopy and Microanalysis, 2021, 27, 2938-2939.	0.2	0