Kang Ju Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8217986/publications.pdf

Version: 2024-02-01

55	2,199	201674	233421 45
papers	citations	h-index	g-index
59	59	59	2440
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rapid Extraction and Detection of Biomolecules via a Microneedle Array of Wet rosslinked Methacrylated Hyaluronic Acid. Advanced Materials Technologies, 2022, 7, 2100874.	5.8	25
2	pH-Responsive doxorubicin delivery using shear-thinning biomaterials for localized melanoma treatment. Nanoscale, 2022, 14, 350-360.	5 . 6	15
3	Selfâ€Plugging Microneedle (SPM) for Intravitreal Drug Delivery. Advanced Healthcare Materials, 2022, 11, e2102599.	7.6	14
4	Iron sulfate-reinforced hydrogel reactors with glucose deprivation, serial reactive oxygen species generation, ferroptosis induction, and photothermal ablation for cancer therapy. Chemical Engineering Journal, 2022, 438, 135584.	12.7	17
5	Coâ€Electrospun Silk Fibroin and Gelatin Methacryloyl Sheet Seeded with Mesenchymal Stem Cells for Tendon Regeneration. Small, 2022, 18, e2107714.	10.0	23
6	Biofabrication of endothelial cell, dermal fibroblast, and multilayered keratinocyte layers for skin tissue engineering. Biofabrication, 2021, 13, 035030.	7.1	54
7	Serially pH-Modulated Hydrogels Based on Boronate Ester and Polydopamine Linkages for Local Cancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 2189-2203.	8.0	36
8	Bioengineered Multicellular Liver Microtissues for Modeling Advanced Hepatic Fibrosis Driven Through Nonâ€Alcoholic Fatty Liver Disease. Small, 2021, 17, e2007425.	10.0	20
9	Single Administration of a Biodegradable, Separable Microneedle Can Substitute for Repeated Application of Eyedrops in the Treatment of Infectious Keratitis. Advanced Healthcare Materials, 2021, 10, e2002287.	7.6	7
10	Polypseudorotaxane and polydopamine linkage-based hyaluronic acid hydrogel network with a single syringe injection for sustained drug delivery. Carbohydrate Polymers, 2021, 266, 118104.	10.2	29
11	Tuning antibacterial properties of poly(vinyl alcohol)/TiO2 composite films by chemically grafting with $3,3\hat{a}\in ^2,4,4\hat{a}\in ^2$ -biphenyltetracarboxylic acid. Polymer Testing, 2021, 102, 107307.	4.8	5
12	Characterization and preliminary safety evaluation of nano-SiO2 isolated from instant coffee. Ecotoxicology and Environmental Safety, 2021, 224, 112694.	6.0	7
13	Designing and utilizing 3D printed chitosan/halloysite nanotubes/tea polyphenol composites to maintain the quality of fresh blueberries. Innovative Food Science and Emerging Technologies, 2021, 74, 102808.	5 . 6	14
14	Highly flexible and porous silk fibroin microneedle wraps for perivascular drug delivery. Journal of Controlled Release, 2021, 340, 125-135.	9.9	28
15	Synthesis and properties of core-shell thymol-loaded zein/shellac nanoparticles by coaxial electrospray as edible coatings. Materials and Design, 2021, 212, 110214.	7.0	21
16	Physicochemical properties of gelatin films containing tea polyphenol-loaded chitosan nanoparticles generated by electrospray. Materials and Design, 2020, 185, 108277.	7.0	85
17	Developing poly(vinyl alcohol)/chitosan films incorporate with d-limonene: Study of structural, antibacterial, and fruit preservation properties. International Journal of Biological Macromolecules, 2020, 145, 722-732.	7.5	73
18	Non-transdermal microneedles for advanced drug delivery. Advanced Drug Delivery Reviews, 2020, 165-166, 41-59.	13.7	80

#	Article	IF	CITATIONS
19	Hydrogelâ€Enabled Transferâ€Printing of Conducting Polymer Films for Soft Organic Bioelectronics. Advanced Functional Materials, 2020, 30, 1906016.	14.9	55
20	Monopotassium phosphate-reinforced in situ forming injectable hyaluronic acid hydrogels for subcutaneous injection. International Journal of Biological Macromolecules, 2020, 163, 2134-2144.	7.5	24
21	Wearable Tactile Sensors: Gelatin Methacryloylâ€Based Tactile Sensors for Medical Wearables (Adv.) Tj ETQq1 1	0.784314	rgBT /Overlo
22	Thrombolytic Agents: Nanocarriers in Controlled Release. Small, 2020, 16, e2001647.	10.0	32
23	Gelatin Methacryloylâ€Based Tactile Sensors for Medical Wearables. Advanced Functional Materials, 2020, 30, 2003601.	14.9	112
24	Biodegradable <i>β</i> â€Cyclodextrin Conjugated Gelatin Methacryloyl Microneedle for Delivery of Waterâ€Insoluble Drug. Advanced Healthcare Materials, 2020, 9, e2000527.	7.6	91
25	Mechanical Cues Regulating Proangiogenic Potential of Human Mesenchymal Stem Cells through YAPâ€Mediated Mechanosensing. Small, 2020, 16, e2001837.	10.0	25
26	Microfluidicâ∈Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications. Small, 2020, 16, e2000171.	10.0	121
27	Rapidly Detachable Microneedles Using Porous Waterâ€Soluble Layer for Ocular Drug Delivery. Advanced Materials Technologies, 2020, 5, 1901145.	5.8	30
28	Angiogenesis: Mechanical Cues Regulating Proangiogenic Potential of Human Mesenchymal Stem Cells through YAPâ€Mediated Mechanosensing (Small 25/2020). Small, 2020, 16, 2070142.	10.0	0
29	Hydrogelâ€Enabled Transfer Printing: Hydrogelâ€Enabled Transferâ€Printing of Conducting Polymer Films for Soft Organic Bioelectronics (Adv. Funct. Mater. 6/2020). Advanced Functional Materials, 2020, 30, 2070038.	14.9	2
30	Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid. Small, 2020, 16, e1905910.	10.0	104
31	Synthesis of Injectable Shearâ€Thinning Biomaterials of Various Compositions of Gelatin and Synthetic Silicate Nanoplatelet. Biotechnology Journal, 2020, 15, e1900456.	3.5	25
32	Microneedle drug eluting balloon for enhanced drug delivery to vascular tissue. Journal of Controlled Release, 2020, 321, 174-183.	9.9	38
33	A Patch of Detachable Hybrid Microneedle Depot for Localized Delivery of Mesenchymal Stem Cells in Regeneration Therapy. Advanced Functional Materials, 2020, 30, 2000086.	14.9	91
34	Microneedle Patches: Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid (Small 16/2020). Small, 2020, 16, 2070086.	10.0	4
35	Rhodamine Conjugated Gelatin Methacryloyl Nanoparticles for Stable Cell Imaging. ACS Applied Bio Materials, 2020, 3, 6908-6918.	4.6	12
36	Combinatorial screening of biochemical and physical signals for phenotypic regulation of stem cell–based cartilage tissue engineering. Science Advances, 2020, 6, eaaz5913.	10.3	42

#	Article	IF	Citations
37	Minimally Invasive Technologies for Biosensing. , 2020, , 193-223.		О
38	A Human Liverâ€onâ€aâ€Chip Platform for Modeling Nonalcoholic Fatty Liver Disease. Advanced Biology, 2019, 3, e1900104.	3.0	50
39	Three-Step Thermal Drawing for Rapid Prototyping of Highly Customizable Microneedles for Vascular Tissue Insertion. Pharmaceutics, 2019, 11, 100.	4.5	13
40	In Vitro Human Liver Model of Nonalcoholic Steatohepatitis by Coculturing Hepatocytes, Endothelial Cells, and Kupffer Cells. Advanced Healthcare Materials, 2019, 8, e1901379.	7.6	30
41	Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery. Advanced Healthcare Materials, 2019, 8, e1801054.	7.6	177
42	Organâ€onâ€aâ€Chip for Cancer and Immune Organs Modeling. Advanced Healthcare Materials, 2019, 8, e1801363.	7.6	111
43	Linear Micro-patterned Drug Eluting Balloon (LMDEB) for Enhanced Endovascular Drug Delivery. Scientific Reports, 2018, 8, 3666.	3.3	14
44	Intracorneal injection of a detachable hybrid microneedle for sustained drug delivery. Acta Biomaterialia, 2018, 80, 48-57.	8.3	58
45	Depthwise-controlled scleral insertion of microneedles for drug delivery to the back of the eye. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 31-41.	4.3	29
46	Biodegradable Microneedle Mesh to Deliver Heterogeneous Drugs for Vascular Diseases. Transactions of the Korean Society of Mechanical Engineers, B, 2018, 42, 145-150.	0.1	0
47	Transfer-molded wrappable microneedle meshes for perivascular drug delivery. Journal of Controlled Release, 2017, 268, 237-246.	9.9	41
48	A Biodegradable Microneedle Cuff for Comparison of Drug Effects through Perivascular Delivery to Balloon-Injured Arteries. Polymers, 2017, 9, 56.	4.5	11
49	Microneedle-based minimally-invasive measurement of puncture resistance and fracture toughness of sclera. Acta Biomaterialia, 2016, 44, 286-294.	8.3	16
50	Rapid and repeatable fabrication of high A/R silk fibroin microneedles using thermally-drawn micromolds. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 11-19.	4.3	66
51	Impact insertion of transfer-molded microneedle for localized and minimally invasive ocular drug delivery. Journal of Controlled Release, 2015, 209, 272-279.	9.9	71
52	Perivascular biodegradable microneedle cuff for reduction of neointima formation after vascular injury. Journal of Controlled Release, 2014, 192, 174-181.	9.9	42
53	Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 224-233.	4.3	44
54	High-resolution imaging of microneedles in biological tissue with optical coherence tomography. Transactions of the Society of Information Storage Systems, 2013, 9, 17-21.	0.0	0

#	Article	IF	CITATIONS
55	Controlled release of bupivacaine HCl through microchannels of biodegradable drug delivery device. Biomedical Microdevices, 2012, 14, 583-593.	2.8	18