Kang Ju Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8217986/publications.pdf

Version: 2024-02-01

55	2,199	201674	233421 45
papers	citations	h-index	g-index
59	59	59	2440
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery. Advanced Healthcare Materials, 2019, 8, e1801054.	7.6	177
2	Microfluidicâ€Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications. Small, 2020, 16, e2000171.	10.0	121
3	Gelatin Methacryloylâ€Based Tactile Sensors for Medical Wearables. Advanced Functional Materials, 2020, 30, 2003601.	14.9	112
4	Organâ€onâ€aâ€Chip for Cancer and Immune Organs Modeling. Advanced Healthcare Materials, 2019, 8, e1801363.	7.6	111
5	Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid. Small, 2020, 16, e1905910.	10.0	104
6	Biodegradable <i>β</i> à€Cyclodextrin Conjugated Gelatin Methacryloyl Microneedle for Delivery of Waterâ€Insoluble Drug. Advanced Healthcare Materials, 2020, 9, e2000527.	7.6	91
7	A Patch of Detachable Hybrid Microneedle Depot for Localized Delivery of Mesenchymal Stem Cells in Regeneration Therapy. Advanced Functional Materials, 2020, 30, 2000086.	14.9	91
8	Physicochemical properties of gelatin films containing tea polyphenol-loaded chitosan nanoparticles generated by electrospray. Materials and Design, 2020, 185, 108277.	7.0	85
9	Non-transdermal microneedles for advanced drug delivery. Advanced Drug Delivery Reviews, 2020, 165-166, 41-59.	13.7	80
10	Developing poly(vinyl alcohol)/chitosan films incorporate with d-limonene: Study of structural, antibacterial, and fruit preservation properties. International Journal of Biological Macromolecules, 2020, 145, 722-732.	7.5	73
11	Impact insertion of transfer-molded microneedle for localized and minimally invasive ocular drug delivery. Journal of Controlled Release, 2015, 209, 272-279.	9.9	71
12	Rapid and repeatable fabrication of high A/R silk fibroin microneedles using thermally-drawn micromolds. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, $11-19$.	4.3	66
13	Intracorneal injection of a detachable hybrid microneedle for sustained drug delivery. Acta Biomaterialia, 2018, 80, 48-57.	8.3	58
14	Hydrogelâ€Enabled Transferâ€Printing of Conducting Polymer Films for Soft Organic Bioelectronics. Advanced Functional Materials, 2020, 30, 1906016.	14.9	55
15	Biofabrication of endothelial cell, dermal fibroblast, and multilayered keratinocyte layers for skin tissue engineering. Biofabrication, 2021, 13, 035030.	7.1	54
16	A Human Liverâ€onâ€aâ€Chip Platform for Modeling Nonalcoholic Fatty Liver Disease. Advanced Biology, 2019, 3, e1900104.	3.0	50
17	Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 224-233.	4.3	44
18	Perivascular biodegradable microneedle cuff for reduction of neointima formation after vascular injury. Journal of Controlled Release, 2014, 192, 174-181.	9.9	42

#	Article	IF	Citations
19	Combinatorial screening of biochemical and physical signals for phenotypic regulation of stem cell–based cartilage tissue engineering. Science Advances, 2020, 6, eaaz5913.	10.3	42
20	Transfer-molded wrappable microneedle meshes for perivascular drug delivery. Journal of Controlled Release, 2017, 268, 237-246.	9.9	41
21	Microneedle drug eluting balloon for enhanced drug delivery to vascular tissue. Journal of Controlled Release, 2020, 321, 174-183.	9.9	38
22	Serially pH-Modulated Hydrogels Based on Boronate Ester and Polydopamine Linkages for Local Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 2189-2203.	8.0	36
23	Thrombolytic Agents: Nanocarriers in Controlled Release. Small, 2020, 16, e2001647.	10.0	32
24	In Vitro Human Liver Model of Nonalcoholic Steatohepatitis by Coculturing Hepatocytes, Endothelial Cells, and Kupffer Cells. Advanced Healthcare Materials, 2019, 8, e1901379.	7.6	30
25	Rapidly Detachable Microneedles Using Porous Waterâ€Soluble Layer for Ocular Drug Delivery. Advanced Materials Technologies, 2020, 5, 1901145.	5.8	30
26	Depthwise-controlled scleral insertion of microneedles for drug delivery to the back of the eye. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 31-41.	4.3	29
27	Polypseudorotaxane and polydopamine linkage-based hyaluronic acid hydrogel network with a single syringe injection for sustained drug delivery. Carbohydrate Polymers, 2021, 266, 118104.	10.2	29
28	Highly flexible and porous silk fibroin microneedle wraps for perivascular drug delivery. Journal of Controlled Release, 2021, 340, 125-135.	9.9	28
29	Mechanical Cues Regulating Proangiogenic Potential of Human Mesenchymal Stem Cells through YAPâ€Mediated Mechanosensing. Small, 2020, 16, e2001837.	10.0	25
30	Synthesis of Injectable Shearâ€Thinning Biomaterials of Various Compositions of Gelatin and Synthetic Silicate Nanoplatelet. Biotechnology Journal, 2020, 15, e1900456.	3.5	25
31	Rapid Extraction and Detection of Biomolecules via a Microneedle Array of Wetâ€Crosslinked Methacrylated Hyaluronic Acid. Advanced Materials Technologies, 2022, 7, 2100874.	5.8	25
32	Monopotassium phosphate-reinforced in situ forming injectable hyaluronic acid hydrogels for subcutaneous injection. International Journal of Biological Macromolecules, 2020, 163, 2134-2144.	7.5	24
33	Coâ€Electrospun Silk Fibroin and Gelatin Methacryloyl Sheet Seeded with Mesenchymal Stem Cells for Tendon Regeneration. Small, 2022, 18, e2107714.	10.0	23
34	Synthesis and properties of core-shell thymol-loaded zein/shellac nanoparticles by coaxial electrospray as edible coatings. Materials and Design, 2021, 212, 110214.	7.0	21
35	Bioengineered Multicellular Liver Microtissues for Modeling Advanced Hepatic Fibrosis Driven Through Nonâ€Alcoholic Fatty Liver Disease. Small, 2021, 17, e2007425.	10.0	20
36	Controlled release of bupivacaine HCl through microchannels of biodegradable drug delivery device. Biomedical Microdevices, 2012, 14, 583-593.	2.8	18

#	Article	IF	CITATIONS
37	Iron sulfate-reinforced hydrogel reactors with glucose deprivation, serial reactive oxygen species generation, ferroptosis induction, and photothermal ablation for cancer therapy. Chemical Engineering Journal, 2022, 438, 135584.	12.7	17
38	Microneedle-based minimally-invasive measurement of puncture resistance and fracture toughness of sclera. Acta Biomaterialia, 2016, 44, 286-294.	8.3	16
39	pH-Responsive doxorubicin delivery using shear-thinning biomaterials for localized melanoma treatment. Nanoscale, 2022, 14, 350-360.	5. 6	15
40	Linear Micro-patterned Drug Eluting Balloon (LMDEB) for Enhanced Endovascular Drug Delivery. Scientific Reports, 2018, 8, 3666.	3.3	14
41	Designing and utilizing 3D printed chitosan/halloysite nanotubes/tea polyphenol composites to maintain the quality of fresh blueberries. Innovative Food Science and Emerging Technologies, 2021, 74, 102808.	5.6	14
42	Selfâ€Plugging Microneedle (SPM) for Intravitreal Drug Delivery. Advanced Healthcare Materials, 2022, 11, e2102599.	7.6	14
43	Three-Step Thermal Drawing for Rapid Prototyping of Highly Customizable Microneedles for Vascular Tissue Insertion. Pharmaceutics, 2019, 11, 100.	4.5	13
44	Rhodamine Conjugated Gelatin Methacryloyl Nanoparticles for Stable Cell Imaging. ACS Applied Bio Materials, 2020, 3, 6908-6918.	4.6	12
45	A Biodegradable Microneedle Cuff for Comparison of Drug Effects through Perivascular Delivery to Balloon-Injured Arteries. Polymers, 2017, 9, 56.	4.5	11
46	Single Administration of a Biodegradable, Separable Microneedle Can Substitute for Repeated Application of Eyedrops in the Treatment of Infectious Keratitis. Advanced Healthcare Materials, 2021, 10, e2002287.	7.6	7
47	Characterization and preliminary safety evaluation of nano-SiO2 isolated from instant coffee. Ecotoxicology and Environmental Safety, 2021, 224, 112694.	6.0	7
48	Wearable Tactile Sensors: Gelatin Methacryloylâ€Based Tactile Sensors for Medical Wearables (Adv.) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
49	Tuning antibacterial properties of poly(vinyl alcohol)/TiO2 composite films by chemically grafting with $3,38 \in ^2$, $4,48 \in ^2$ -biphenyltetracarboxylic acid. Polymer Testing, 2021, 102, 107307.	4.8	5
50	Microneedle Patches: Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid (Small 16/2020). Small, 2020, 16, 2070086.	10.0	4
51	Hydrogelâ€Enabled Transfer Printing: Hydrogelâ€Enabled Transferâ€Printing of Conducting Polymer Films for Soft Organic Bioelectronics (Adv. Funct. Mater. 6/2020). Advanced Functional Materials, 2020, 30, 2070038.	14.9	2
52	Angiogenesis: Mechanical Cues Regulating Proangiogenic Potential of Human Mesenchymal Stem Cells through YAPâ€Mediated Mechanosensing (Small 25/2020). Small, 2020, 16, 2070142.	10.0	0
53	High-resolution imaging of microneedles in biological tissue with optical coherence tomography. Transactions of the Society of Information Storage Systems, 2013, 9, 17-21.	0.0	O
54	Biodegradable Microneedle Mesh to Deliver Heterogeneous Drugs for Vascular Diseases. Transactions of the Korean Society of Mechanical Engineers, B, 2018, 42, 145-150.	0.1	0

ARTICLE IF CITATIONS

55 Minimally Invasive Technologies for Biosensing. , 2020, , 193-223. 0