Ramon Bartolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8217928/publications.pdf

Version: 2024-02-01

30 papers 1,264 citations

18 h-index 23 g-index

32 all docs 32 docs citations 32 times ranked 1086 citing authors

#	Article	IF	CITATIONS
1	Differential coding of goals and actions in ventral and dorsal corticostriatal circuits during goal-directed behavior. Cell Reports, 2022, 38, 110198.	2.9	12
2	Inference as a fundamental process in behavior. Current Opinion in Behavioral Sciences, 2021, 38, 8-13.	2.0	11
3	Reward-related choices determine information timing and flow across macaque lateral prefrontal cortex. Nature Communications, 2021, 12, 894.	5.8	13
4	A convolutional neural network for estimating synaptic connectivity from spike trains. Scientific Reports, $2021,11,12087.$	1.6	7
5	Information-Limiting Correlations in Large Neural Populations. Journal of Neuroscience, 2020, 40, 1668-1678.	1.7	62
6	Dimensionality, information and learning in prefrontal cortex. PLoS Computational Biology, 2020, 16, e1007514.	1.5	29
7	Prefrontal Cortex Predicts State Switches during Reversal Learning. Neuron, 2020, 106, 1044-1054.e4.	3.8	78
8	Dimensionality, information and learning in prefrontal cortex. , 2020, 16, e1007514.		0
9	Dimensionality, information and learning in prefrontal cortex. , 2020, 16, e1007514.		O
10	Dimensionality, information and learning in prefrontal cortex. , 2020, 16, e1007514.		0
11	Dimensionality, information and learning in prefrontal cortex. , 2020, 16, e1007514.		O
12	Primate beta oscillations and rhythmic behaviors. Journal of Neural Transmission, 2018, 125, 461-470.	1.4	34
13	Neurons of the prefrontal cortex encode a representation of a Bayesian belief during reinforcement learning. , 2018, , .		O
14	Effects of Ventral Striatum Lesions on Stimulus-Based versus Action-Based Reinforcement Learning. Journal of Neuroscience, 2017, 37, 6902-6914.	1.7	43
15	High channel count single-unit recordings from nonhuman primate frontal cortex. Journal of Neuroscience Methods, 2017, 289, 39-47.	1.3	38
16	\hat{l}^2 Oscillations Are Linked to the Initiation of Sensory-Cued Movement Sequences and the Internal Guidance of Regular Tapping in the Monkey. Journal of Neuroscience, 2015, 35, 4635-4640.	1.7	99
17	Sensorimotor neural dynamics during isochronous tapping in the medial premotor cortex of the macaque. European Journal of Neuroscience, 2015, 41, 586-602.	1.2	64
18	Information Processing in the Primate Basal Ganglia during Sensory-Guided and Internally Driven Rhythmic Tapping. Journal of Neuroscience, 2014, 34, 3910-3923.	1.7	155

#	Article	IF	CITATIONS
19	Monkeys time their pauses of movement and not their movement-kinematics during a synchronization-continuation rhythmic task. Journal of Neurophysiology, 2014, 111, 2138-2149.	0.9	29
20	Dynamic Representation of the Temporal and Sequential Structure of Rhythmic Movements in the Primate Medial Premotor Cortex. Journal of Neuroscience, 2014, 34, 11972-11983.	1.7	117
21	Neurophysiology of Timing in the Hundreds of Milliseconds: Multiple Layers of Neuronal Clocks in the Medial Premotor Areas. Advances in Experimental Medicine and Biology, 2014, 829, 143-154.	0.8	27
22	Rhesus Monkeys (Macaca mulatta) Detect Rhythmic Groups in Music, but Not the Beat. PLoS ONE, 2012, 7, e51369.	1.1	108
23	Measuring time with different neural chronometers during a synchronization-continuation task. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19784-19789.	3.3	172
24	What Can Be Inferred from Multiple-task Psychophysical Studies about the Mechanisms for Temporal Processing?. Lecture Notes in Computer Science, 2011, , 207-229.	1.0	4
25	Temporal discrimination learning for treatment of gait dysfunction in Parkinson's disease: a feasibility study using single subject design. Journal of Parkinsonism and Restless Leg Syndrome, 2011, 1, 8-11.	0.0	1
26	Learning and generalization of time production in humans: rules of transfer across modalities and interval durations. Experimental Brain Research, 2009, 197, 91-100.	0.7	45
27	Crayfish <i>Procambarus clarkii</i> Retina and Nervous System Exhibit Antioxidant Circadian Rhythms Coupled with Metabolic and Luminous Daily Cycles. Photochemistry and Photobiology, 2009, 85, 78-87.	1.3	25
28	The Context of Temporal Processing Is Represented in the Multidimensional Relationships between Timing Tasks. PLoS ONE, 2008, 3, e3169.	1.1	63
29	Functional Architecture of Directional Tuning in the Primate Motor Cortex During 3D Reaching. , 2008, , 243-264.		0
30	Contrasting Effects of Cd2+ and Co2+ on the Blocking/Unblocking of Human Cav3 Channels. Journal of Membrane Biology, 2005, 207, 91-105.	1.0	25