Antonino Chiummo

List of Publications by Citations

Source: https://exaly.com/author-pdf/8217617/antonino-chiummo-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 191
 40,012
 69
 200

 papers
 citations
 h-index
 g-index

 205
 50,525
 5.8
 4.88

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
191	Observation of Gravitational Waves from a Binary Black Hole Merger. <i>Physical Review Letters</i> , 2016 , 116, 061102	7.4	6108
190	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. <i>Physical Review Letters</i> , 2017 , 119, 161101	7.4	4272
189	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2016 , 116, 241103	7.4	2136
188	Multi-messenger Observations of a Binary Neutron Star Merger. <i>Astrophysical Journal Letters</i> , 2017 , 848, L12	7.9	1935
187	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. <i>Astrophysical Journal Letters</i> , 2017 , 848, L13	7.9	1614
186	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. <i>Physical Review Letters</i> , 2017 , 118, 221101	7.4	1609
185	Advanced Virgo: a second-generation interferometric gravitational wave detector. <i>Classical and Quantum Gravity</i> , 2015 , 32, 024001	3.3	1567
184	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2017 , 119, 141101	7.4	1270
183	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. <i>Physical Review X</i> , 2019 , 9,	9.1	1169
182	GW170817: Measurements of Neutron Star Radii and Equation of State. <i>Physical Review Letters</i> , 2018 , 121, 161101	7.4	867
181	Tests of General Relativity with GW150914. <i>Physical Review Letters</i> , 2016 , 116, 221101	7.4	837
180	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. <i>Astrophysical Journal Letters</i> , 2017 , 851, L35	7.9	809
179	Characterization of the LIGO detectors during their sixth science run. <i>Classical and Quantum Gravity</i> , 2015 , 32, 115012	3.3	790
178	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. <i>Physical Review X</i> , 2016 , 6,	9.1	723
177	GW190425: Observation of a Compact Binary Coalescence with Total Mass ~ 3.4 M ?. <i>Astrophysical Journal Letters</i> , 2020 , 892, L3	7.9	591
176	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. <i>Astrophysical Journal Letters</i> , 2020 , 896, L44	7.9	571
175	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2018 , 21, 3	32.5	543

174	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102	7.4	515
173	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 818, L22	7.9	512
172	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9,	9.1	423
171	GW190521: A Binary Black Hole Merger with a Total Mass of 150 M_{?}. <i>Physical Review Letters</i> , 2020 , 125, 101102	7.4	420
170	A gravitational-wave standard siren measurement of the Hubble constant. <i>Nature</i> , 2017 , 551, 85-88	50.4	413
169	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. <i>Living Reviews in Relativity</i> , 2016 , 19, 1	32.5	393
168	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal Letters</i> , 2019 , 882, L24	7.9	381
167	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. <i>Physical Review Letters</i> , 2016 , 116, 131103	7.4	328
166	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. <i>Physical Review X</i> , 2021 , 11,	9.1	311
165	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. <i>Physical Review D</i> , 2019 , 100,	4.9	258
164	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	253
163	Virgo: a laser interferometer to detect gravitational waves. <i>Journal of Instrumentation</i> , 2012 , 7, P03017	2- R 030	12:12
162	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. <i>Physical Review D</i> , 2020 , 102,	4.9	212
161	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 833, L1	7.9	209
160	Properties and Astrophysical Implications of the 150 M? Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020 , 900, L13	7.9	207
159	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102	7.4	204
158	Population Properties of Compact Objects from the Second LIGOVirgo Gravitational-Wave Transient Catalog. <i>Astrophysical Journal Letters</i> , 2021 , 913, L7	7.9	194
157	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. <i>Physical Review Letters</i> , 2016 , 116, 131102	7.4	188

156	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 826, L13	7.9	183
155	Search for gravitational waves from low mass compact binary coalescence in LIGOE sixth science run and VirgoE science runs 2 and 3. <i>Physical Review D</i> , 2012 , 85,	4.9	172
154	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016 , 33,	3.3	155
153	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2020 , 23, 3	32.5	144
152	Observation of Gravitational Waves from Two Neutron Star B lack Hole Coalescences. <i>Astrophysical Journal Letters</i> , 2021 , 915, L5	7.9	142
151	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121101	7.4	137
150	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. <i>Physical Review Letters</i> , 2019 , 123, 231108	7.4	134
149	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 851, L16	7.9	133
148	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR B LACK HOLE MERGERS FROM ADVANCED LIGOS FIRST OBSERVING RUN. <i>Astrophysical Journal Letters</i> , 2016 , 832, L21	7.9	130
147	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L39	7.9	127
146	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. <i>Physical Review D</i> , 2013 , 88,	4.9	122
145	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. <i>Physical Review Letters</i> , 2018 , 120, 091101	7.4	120
144	Search for the isotropic stochastic background using data from Advanced LIGOE second observing run. <i>Physical Review D</i> , 2019 , 100,	4.9	117
143	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. <i>Astrophysical Journal</i> , 2014 , 785, 119	4.7	109
142	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. <i>Astrophysical Journal</i> , 2017 , 839, 12	4.7	107
141	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. <i>Astrophysical Journal Letters</i> , 2017 , 850, L35	7.9	104
140	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. <i>Physical Review D</i> , 2012 , 85,	4.9	96
139	Observing gravitational-wave transient GW150914 with minimal assumptions. <i>Physical Review D</i> , 2016 , 93,	4.9	94

138	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. <i>Astrophysical Journal</i> , 2012 , 760, 12	4.7	94	
137	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary B lack-hole Merger GW170814. <i>Astrophysical Journal Letters</i> , 2019 , 876, L7	7.9	91	
136	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009\(\textbf{Q} 010. \) Physical Review D, 2013 , 87,	4.9	91	
135	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. <i>Physical Review X</i> , 2016 , 6,	9.1	89	
134	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. <i>Physical Review D</i> , 2013 , 87,	4.9	84	
133	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. <i>Physical Review D</i> , 2019 , 100,	4.9	81	
132	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. <i>Physical Review D</i> , 2021 , 103,	4.9	81	
131	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. <i>Physical Review D</i> , 2016 , 93,	4.9	80	
130	A guide to LIGON irgo detector noise and extraction of transient gravitational-wave signals. <i>Classical and Quantum Gravity</i> , 2020 , 37, 055002	3.3	78	
129	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. <i>Astrophysical Journal Letters</i> , 2019 , 871, L13	7.9	77	
128	Directly comparing GW150914 with numerical solutions of Einstein equations for binary black hole coalescence. <i>Physical Review D</i> , 2016 , 94,	4.9	76	
127	Effects of waveform model systematics on the interpretation of GW150914. <i>Classical and Quantum Gravity</i> , 2017 , 34, 104002	3.3	74	
126	Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. <i>Physical Review Letters</i> , 2014 , 113, 231101	7.4	74	
125	Implementation and testing of the first prompt search for Igravitational wave transients with electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 539, A124	5.1	71	
124	Model comparison from LIGOI√irgo data on GW170817 binary components and consequences for the merger remnant. <i>Classical and Quantum Gravity</i> , 2020 , 37, 045006	3.3	69	
123	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 541, A155	5.1	69	
122	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. <i>Physical Review Letters</i> , 2019 , 123, 161102	7.4	68	
121	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102	7.4	65	

120	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. <i>Physical Review D</i> , 2017 , 96,	4.9	64
119	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015 2 017 LIGO Data. <i>Astrophysical Journal</i> , 2019 , 879, 10	4.7	63
118	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGOE first observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065010	3.3	62
117	All-sky search for periodic gravitational waves in the full S5 LIGO data. <i>Physical Review D</i> , 2012 , 85,	4.9	61
116	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal</i> , 2019 , 875, 160	4.7	60
115	Constraints on cosmic strings using data from the first Advanced LIGO observing run. <i>Physical Review D</i> , 2018 , 97,	4.9	60
114	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. <i>Physical Review Letters</i> , 2018 , 120, 201102	7.4	60
113	Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. <i>Physical Review Letters</i> , 2014 , 112, 131101	7.4	59
112	The characterization of Virgo data and its impact on gravitational-wave searches. <i>Classical and Quantum Gravity</i> , 2012 , 29, 155002	3.3	59
111	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. <i>Astrophysical Journal</i> , 2015 , 813, 39	4.7	58
110	Directed search for continuous gravitational waves from the Galactic center. <i>Physical Review D</i> , 2013 , 88,	4.9	57
109	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012 , 203, 28	8	57
108	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. <i>Physical Review D</i> , 2017 , 95,	4.9	54
107	All-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54
106	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54
105	First all-sky search for continuous gravitational waves from unknown sources in binary systems. <i>Physical Review D</i> , 2014 , 90,	4.9	54
104	SUPPLEMENT: THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914[[2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14	8	52
103	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7	8	51

(2016-2018)

102	First Search for Nontensorial Gravitational Waves from Known Pulsars. <i>Physical Review Letters</i> , 2018 , 120, 031104	7.4	50	
101	On the Progenitor of Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L40	7.9	50	
100	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. <i>Astrophysical Journal</i> , 2019 , 875, 161	4.7	49	
99	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2018 , 121, 231103	7.4	49	
98	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. <i>Physical Review D</i> , 2017 , 95,	4.9	47	
97	Search for gravitational waves from intermediate mass binary black holes. <i>Physical Review D</i> , 2012 , 85,	4.9	46	
96	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 909, 218	4.7	46	
95	The basic physics of the binary black hole merger GW150914. <i>Annalen Der Physik</i> , 2017 , 529, 1600209	2.6	45	
94	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO. <i>Astrophysical Journal</i> , 2019 , 875, 122	4.7	45	
93	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. <i>Physical Review D</i> , 2016 , 94,	4.9	43	
92	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. <i>Physical Review D</i> , 2019 , 99,	4.9	43	
91	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. <i>Astrophysical Journal</i> , 2017 , 841, 89	4.7	42	
90	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600¶000 Hz. <i>Physical Review D</i> , 2012 , 85,	4.9	40	
89	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2019 , 100,	4.9	39	
88	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. <i>Physical Review D</i> , 2019 , 100,	4.9	39	
87	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. <i>Physical Review D</i> , 2017 , 96,	4.9	39	
86	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. <i>Physical Review D</i> , 2015 , 91,	4.9	38	
85	SUPPLEMENT: LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914[2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016 , 225, 8	8	38	

84	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2018 , 97,	4.9	37
83	High-efficiency blue-light generation with a ring cavity with periodically poled KTP. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2007 , 24, 576	1.7	37
82	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. <i>Astrophysical Journal</i> , 2019 , 883, 149	4.7	36
81	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. <i>Physical Review D</i> , 2020 , 101,	4.9	36
80	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. <i>Astrophysical Journal</i> , 2017 , 847, 47	4.7	35
79	Calibration of advanced Virgo and reconstruction of the gravitational wave signal h (t) during the observing run O2. <i>Classical and Quantum Gravity</i> , 2018 , 35, 205004	3.3	35
78	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. <i>Classical and Quantum Gravity</i> , 2014 , 31, 115004	3.3	34
77	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo third observing run. <i>Physical Review D</i> , 2021 , 104,	4.9	33
76	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. <i>Physical Review D</i> , 2014 , 89,	4.9	32
75	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. <i>Physical Review D</i> , 2017 , 96,	4.9	32
74	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. <i>Physical Review D</i> , 2015 , 91,	4.9	32
73	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. <i>Astrophysical Journal Letters</i> , 2020 , 902, L21	7.9	32
72	Directional limits on persistent gravitational waves using data from Advanced LIGOE first two observing runs. <i>Physical Review D</i> , 2019 , 100,	4.9	31
71	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. <i>Physical Review D</i> , 2019 , 100,	4.9	31
70	Search for gravitational waves associated with Fray bursts detected by the interplanetary network. <i>Physical Review Letters</i> , 2014 , 113, 011102	7.4	30
69	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. <i>Physical Review D</i> , 2013 , 88,	4.9	30
68	First low frequency all-sky search for continuous gravitational wave signals. <i>Physical Review D</i> , 2016 , 93,	4.9	29
67	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. <i>Journal of Cosmology and Astroparticle Physics</i> , 2013 , 2013, 008-008	6.4	29

(2010-2016)

66	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. <i>Physical Review D</i> , 2016 , 94,	4.9	29	
65	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. <i>Physical Review D</i> , 2016 , 94,	4.9	28	
64	All-sky search for long-duration gravitational wave transients with initial LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	27	
63	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. <i>Classical and Quantum Gravity</i> , 2014 , 31, 165014	3.3	27	
62	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. <i>Physical Review D</i> , 2015 , 91,	4.9	26	
61	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005\(\textstyle 0.000 \) 2014, 89,	4.9	26	
60	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. <i>Physical Review D</i> , 2014 , 89,	4.9	25	
59	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. <i>Physical Review D</i> , 2014 , 90,	4.9	25	
58	Vacuum squeezed light for atomic memories at the D2 cesium line. <i>Optics Express</i> , 2009 , 17, 3777-81	3.3	25	
57	Tomographic characterization of OPO sources close to threshold. <i>Optics Express</i> , 2005 , 13, 948-56	3.3	25	
56	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. <i>Astrophysical Journal</i> , 2019 , 870, 134	4.7	23	
55	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. <i>Astrophysical Journal</i> , 2019 , 871, 90	4.7	22	
54	Constraining the p-Mode-g-Mode Tidal Instability with GW170817. <i>Physical Review Letters</i> , 2019 , 122, 061104	7.4	22	
53	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO-Virgo Observing Run. <i>Physical Review Letters</i> , 2021 , 126, 241102	7.4	21	
52	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal</i> , 2019 , 886, 75	4.7	21	
51	The Advanced Virgo detector. <i>Journal of Physics: Conference Series</i> , 2015 , 610, 012014	0.3	18	
50	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. <i>Classical and Quantum Gravity</i> , 2014 , 31, 085014	3.3	18	
49	Frequency doubling of low power images using a self-imaging cavity. <i>Optics Express</i> , 2010 , 18, 8033-42	3.3	18	

48	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. <i>Physical Review D</i> , 2019 , 99,	4.9	17
47	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGOE Second Observing Run. <i>Astrophysical Journal</i> , 2019 , 874, 163	4.7	17
46	Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. <i>Physical Review Letters</i> , 2020 , 125, 131101	7.4	17
45	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. <i>Physical Review D</i> , 2021 , 104,	4.9	15
44	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. <i>Physical Review D</i> , 2021 , 103,	4.9	15
43	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. <i>Physical Review D</i> , 2016 , 93,	4.9	14
42	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. <i>Physical Review D</i> , 2017 , 95,	4.9	14
41	Twin beams correlation and single beam noise for triply resonant KTP OPOs. <i>Optics Communications</i> , 2001 , 194, 373-379	2	14
40	Tunable twin beams generated by a type-I LNB OPO. Applied Physics B: Lasers and Optics, 2001, 73, 763	3-7 <u>6</u> 6	13
39	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. <i>Astrophysical Journal Letters</i> , 2021 , 913, L27	7.9	13
38	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065009	3.3	12
37	The Hunt for Environmental Noise in Virgo during the Third Observing Run. <i>Galaxies</i> , 2020 , 8, 82	2	12
36	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo first three observing runs. <i>Physical Review D</i> , 2021 , 104,	4.9	12
35	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007 2 013. <i>Physical Review D</i> , 2016 , 93,	4.9	10
34	Performance of the Virgo interferometer longitudinal control system during the second science run. <i>Astroparticle Physics</i> , 2011 , 34, 521-527	2.4	10
33	The NoEMi (Noise Frequency Event Miner) framework. <i>Journal of Physics: Conference Series</i> , 2012 , 363, 012037	0.3	10
32	Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 921, 80	4.7	10
31	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017	3.3	9

30	Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data. <i>Physical Review D</i> , 2022 , 105,	4.9	9	
29	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. <i>Astrophysical Journal</i> , 2020 , 893, 100	4.7	9	
28	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010	0.3	8	
27	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. <i>Classical and Quantum Gravity</i> , 2014 , 31, 165013	3.3	8	
26	Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537B910. <i>Astrophysical Journal</i> , 2021 , 922, 71	4.7	8	
25	The advanced Virgo longitudinal control system for the O2 observing run. <i>Astroparticle Physics</i> , 2020 , 116, 102386	2.4	7	
24	A state observer for the Virgo inverted pendulum. Review of Scientific Instruments, 2011, 82, 094502	1.7	6	
23	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGOVirgo Run O3a. <i>Astrophysical Journal</i> , 2021 , 915, 86	4.7	6	
22	Status of the Advanced Virgo gravitational wave detector. <i>International Journal of Modern Physics A</i> , 2017 , 32, 1744003	1.2	5	
21	Scattered light noise characterisation at the Virgo interferometer with tvf-EMD adaptive algorithm. <i>Classical and Quantum Gravity</i> , 2020 , 37, 145011	3.3	5	
20	Model Independent Numerical Procedure for the Diagonalization of a Multiple Input Multiple Output Dynamic System. <i>IEEE Transactions on Nuclear Science</i> , 2011 , 58, 1588-1595	1.7	4	
19	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005	3.3	4	
18	A theoretical and experimental study of fluctuations of the optical parametric oscillator. <i>Optics and Lasers in Engineering</i> , 2002 , 37, 585-599	4.6	4	
17	All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2021 , 104,	4.9	4	
16	Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. <i>Astronomy and Astrophysics</i> ,	5.1	4	
15	Status of Advanced Virgo. <i>EPJ Web of Conferences</i> , 2018 , 182, 02003	0.3	4	
14	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO Tringo Third Observing Run. <i>Astrophysical Journal</i> , 2021 , 923, 14	4.7	4	
13	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. <i>Physical Review D</i> , 2022 , 105,	4.9	4	

12	Spectral properties of the single beams generated by an optical parametric oscillator. <i>Journal of Optics B: Quantum and Semiclassical Optics</i> , 2002 , 4, S313-S317		3
11	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. Classical and Quantum Gravity, 2022, 39, 045006	3.3	2
10	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA 2018 , 21, 1		2
9	Constraints on dark photon dark matter using data from LIGOS and VirgoS third observing run. <i>Physical Review D</i> , 2022 , 105,	4.9	2
8	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2021 , 104,	4.9	1
7	Determination of the light exposure on the photodiodes of a new instrumented baffle for the Virgo input mode cleaner end-mirror. <i>Classical and Quantum Gravity</i> , 2021 , 38, 045002	3.3	1
6	Auxiliary lasers for Advanced Virgo Gravitational Wave detector using single pass Second Harmonic Generation in Periodically Poled Lithium Niobate crystal. <i>Journal of Physics: Conference Series</i> , 2020 , 1548, 012025	0.3	1
5	Development of a Frequency Tunable Green Laser Source for Advanced Virgo+ Gravitational Waves Detector. <i>Galaxies</i> , 2020 , 8, 87	2	1
4			
3	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO V irgo Run O3b. <i>Astrophysical Journal</i> , 2022 , 928, 186	4.7	1
2	Measurement of the stray light in the Advanced Virgo input mode cleaner cavity using an instrumented baffle. <i>Classical and Quantum Gravity</i> , 2022 , 39, 115011	3.3	O
1	Twin-beams Statistics for Strong Pumping. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences 2001 56 224-227	1.4	