Ben Young

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8217180/ben-young-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

374	9,610	50	73
papers	citations	h-index	g-index
399	11,443 ext. citations	3.9	7.34
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
374	Behaviour of cold-formed steel built-up I-sections with perforated web under localized forces. Journal of Constructional Steel Research, 2022 , 190, 107129	3.8	
373	Design of cold-formed steel built-up open section members under combined compression and bending. <i>Thin-Walled Structures</i> , 2022 , 172, 108890	4.7	О
372	Beam-Column Tests of Cold-Formed Steel Built-Up Closed Sections. <i>Journal of Structural Engineering</i> , 2022 , 148,	3	2
371	Cold-formed stainless steel RHS members undergoing combined bending and web crippling: Testing, modelling and design. <i>Engineering Structures</i> , 2022 , 250, 113466	4.7	O
370	Strength predictions of circular hollow section T-joints of steel grade 1100 MPa. <i>Journal of Constructional Steel Research</i> , 2022 , 188, 107003	3.8	1
369	Design of cold-formed ferritic stainless steel RHS perforated beams. <i>Engineering Structures</i> , 2022 , 250, 113372	4.7	
368	Web crippling of cold-formed steel built-up box sections. <i>Thin-Walled Structures</i> , 2022 , 171, 108789	4.7	O
367	Structural performance of cold-formed steel built-up section beams under non-uniform bending. Journal of Constructional Steel Research, 2022, 189, 107050	3.8	1
366	Web crippling design of cold-formed steel built-up I-sections. <i>Engineering Structures</i> , 2022 , 252, 113731	4.7	1
365	Experimental and numerical investigation on cold-formed steel built-up section pin-ended columns. <i>Thin-Walled Structures</i> , 2022 , 170, 108444	4.7	9
364	Effect of member orientation on static strengths of cold-formed high strength steel tubular X-joints. <i>Thin-Walled Structures</i> , 2022 , 170, 108501	4.7	O
363	Experimental study on cold-formed steel built-up section beam-columns experiencing non-uniform bending. <i>Engineering Structures</i> , 2022 , 256, 113954	4.7	1
362	Cold-formed high strength steel tubular beam-columns. <i>Engineering Structures</i> , 2021 , 230, 111618	4.7	10
361	Design of lean duplex stainless steel tubular sections subjected to concentrated end bearing loads at elevated temperatures. <i>Thin-Walled Structures</i> , 2021 , 160, 107298	4.7	2
360	Design of Lean Duplex Stainless Steel Tubular Sections Subjected to Concentrated End-Bearing Loads. <i>Journal of Structural Engineering</i> , 2021 , 147, 04021009	3	2
359	Experimental investigation on cold-formed steel lipped channel beams affected by local-distortional interaction under non-uniform bending. <i>Thin-Walled Structures</i> , 2021 , 161, 107494	4.7	18
358	High strength steel square and rectangular tubular stub columns infilled with concrete. <i>Journal of Constructional Steel Research</i> , 2021 , 179, 106536	3.8	5

(2021-2021)

357	Flexural behaviour of cold-formed steel oval hollow section beams. <i>Journal of Constructional Steel Research</i> , 2021 , 180, 106605	3.8	4	
356	Experimental and Numerical Investigations of S690 High-Strength Steel Welded I-Sections under Combined Compression and Bending. <i>Journal of Structural Engineering</i> , 2021 , 147, 04021054	3	8	
355	Beam-column design of cold-formed steel semi-oval hollow non-slender sections. <i>Thin-Walled Structures</i> , 2021 , 162, 107376	4.7	21	
354	Effects of material ductility and cooling methods on the bearing strength of steel bolted connections. <i>Journal of Constructional Steel Research</i> , 2021 , 181, 106625	3.8	2	
353	Post-fire mechanical response of high strength steels. <i>Thin-Walled Structures</i> , 2021 , 164, 107606	4.7	4	
352	Web crippling design of lean duplex stainless steel tubular members under interior loading conditions. <i>Engineering Structures</i> , 2021 , 238, 112192	4.7	4	
351	Static resistances of cold-formed high strength steel tubular non-90°LX-Joints. <i>Engineering Structures</i> , 2021 , 239, 112064	4.7	7	
350	Numerical investigation and design of fully chord supported tubular T-joints. <i>Engineering Structures</i> , 2021 , 239, 112063	4.7	7	
349	Design of cold-formed high strength steel tubular T-joints under compression loads. <i>Thin-Walled Structures</i> , 2021 , 164, 107573	4.7	5	
348	Experimental and numerical studies on stress concentration factors of high strength steel fabricated box X-joints. <i>Thin-Walled Structures</i> , 2021 , 164, 107858	4.7	1	
347	Structural performance of concrete-filled cold-formed high-strength steel octagonal tubular stub columns. <i>Engineering Structures</i> , 2021 , 239, 112360	4.7	7	
346	Material ductility and temperature effects on block shear capacity of bolted connections. <i>Journal of Constructional Steel Research</i> , 2021 , 177, 106461	3.8	8	
345	Pin-ended press-braked S960 ultra-high strength steel angle section columns: Testing, numerical modelling and design. <i>Engineering Structures</i> , 2021 , 228, 111418	4.7	4	
344	Structural behaviour and design of high strength steel CHS T-joints. <i>Thin-Walled Structures</i> , 2021 , 159, 107215	4.7	4	
343	Tests of aluminum alloy perforated built-up sections subjected to bending. <i>Thin-Walled Structures</i> , 2021 , 158, 107136	4.7	O	
342	Experimental and Numerical Investigations of Octagonal High-Strength Steel Tubular Stub Columns under Combined Compression and Bending. <i>Journal of Structural Engineering</i> , 2021 , 147, 04020282	3	12	
341	Testing, finite element analysis and design of high strength steel RHS T-joints. <i>Engineering Structures</i> , 2021 , 227, 111184	4.7	5	
340	Post-fire residual material properties of cold-formed steel elliptical hollow sections. <i>Journal of Constructional Steel Research</i> , 2021 , 183, 106723	3.8	5	

339	Numerical analysis and design of cold-formed steel elliptical hollow sections under combined compression and bending. <i>Engineering Structures</i> , 2021 , 241, 112417	4.7	7	
338	Design of cold-formed stainless steel RHS and SHS beamBolumns at elevated temperatures. <i>Thin-Walled Structures</i> , 2021 , 165, 107960	4.7	1	
337	Mode Interaction in Cold-Formed Steel Members: State-of-Art Report. <i>Ce/Papers</i> , 2021 , 4, 34-64	0.3	1	
336	Chord plastification in high strength steel circular hollow section X-joints: Testing, modelling and strength predictions. <i>Engineering Structures</i> , 2021 , 243, 112692	4.7	2	
335	Stress concentration factors of cold-formed high strength steel tubular T-joints. <i>Thin-Walled Structures</i> , 2021 , 166, 107996	4.7	2	
334	Tests of cold-formed steel built-up open section members under eccentric compressive load. Journal of Constructional Steel Research, 2021 , 184, 106775	3.8	7	
333	Numerical assessment of stainless steel tubular T-joints subjected to brace and chord axial forces. <i>Ce/Papers</i> , 2021 , 4, 2495-2503	0.3	1	
332	Experimental investigation on stress concentration factors of cold-formed high strength steel tubular X-joints. <i>Engineering Structures</i> , 2021 , 243, 112408	4.7	4	
331	Mechanical properties of cold-formed steel semi-oval hollow sections after exposure to ISO-834 fire. <i>Thin-Walled Structures</i> , 2021 , 167, 108202	4.7	3	
330	Ultimate resistances of member-rotated cold-formed high strength steel tubular T-joints under compression loads. <i>Engineering Structures</i> , 2021 , 244, 112601	4.7	1	
329	Post-fire behaviour of cold-formed high strength steel tubular T- and X-joints. <i>Journal of Constructional Steel Research</i> , 2021 , 186, 106859	3.8	1	
328	Testing and numerical modelling of circular CFDST cross-sections with stainless steel outer tubes in bending. <i>Engineering Structures</i> , 2021 , 247, 113170	4.7	7	
327	Behaviour of concrete-filled ferritic stainless steel tubular joints: Experimental investigation, numerical modelling and design. <i>Engineering Structures</i> , 2021 , 247, 113109	4.7	2	
326	Behaviour of duplex stainless steel bolted connections. <i>Thin-Walled Structures</i> , 2021 , 169, 108380	4.7	3	
325	Cross-Sectional Behavior of Austenitic Stainless Steel Welded I-Sections under Major-Axis Combined Loading. <i>Journal of Structural Engineering</i> , 2021 , 147, 04021202	3	0	
324	Compressive behaviour and design of CFDST cross-sections with stainless steel outer tubes. <i>Journal of Constructional Steel Research</i> , 2020 , 170, 105942	3.8	22	
323	Tests of cold-formed normal and high strength steel tubes under tension. <i>Thin-Walled Structures</i> , 2020 , 153, 106844	4.7	6	
322	Simplified models for residual stresses and equivalent plastic strains in cold-formed steel elliptical hollow sections. <i>Thin-Walled Structures</i> , 2020 , 154, 106835	4.7	3	

321	Tensile Tests of Cold-Formed Stainless Steel Tubes. <i>Journal of Structural Engineering</i> , 2020 , 146, 0402016	5	8	
320	Design of Aluminum Alloy Channel Section Beams. <i>Journal of Structural Engineering</i> , 2020 , 146, 0402007	ļ	3	
319	Beam-column tests of cold-formed steel elliptical hollow sections. <i>Engineering Structures</i> , 2020 , 210, 109911	1.7	28	
318	Net section tension strength of bolted connections in ultra-high strength sheet steel during and after fire. <i>Journal of Constructional Steel Research</i> , 2020 , 172, 106237	3.8	6	
317	Web crippling of aluminium alloy channel sections with flanges restrained. <i>Thin-Walled Structures</i> , 2020 , 148, 106576	1.7	4	
316	Structural performance of cold-formed high strength steel tubular X-Joints under brace axial compression. <i>Engineering Structures</i> , 2020 , 208, 109768	1.7	18	
315	Experimental investigation on cold-formed steel stiffened lipped channel columns undergoing local-distortional interaction. <i>Thin-Walled Structures</i> , 2020 , 150, 106682	1.7	26	
314	Tests of Cold-Formed Steel Semi-Oval Hollow Section Members under Eccentric Axial Load. <i>Journal of Structural Engineering</i> , 2020 , 146, 04020027	;	26	
313	Uniformly bent CFS lipped channel beams experiencing local-distortional interaction: Experimental investigation. <i>Journal of Constructional Steel Research</i> , 2020 , 170, 106098	3.8	7	
312	Experimental study on the behaviour and strength of high strength steel CHS T- and X-joints. Engineering Structures, 2020 , 206, 110182	1.7	12	
311	CFDST sections with square stainless steel outer tubes under axial compression: Experimental investigation, numerical modelling and design. <i>Engineering Structures</i> , 2020 , 207, 110189	1.7	24	
310	Effects of end distance on thin sheet steel single shear bolted connections at elevated temperatures. <i>Thin-Walled Structures</i> , 2020 , 148, 106577	1.7	3	
309	Testing and numerical modelling of S960 ultra-high strength steel angle and channel section stub columns. <i>Engineering Structures</i> , 2020 , 204, 109902	1.7	30	
308	Behaviour of concrete-filled cold-formed high strength steel circular stub columns. <i>Thin-Walled Structures</i> , 2020 , 157, 107078	1.7	15	
307	Effects of End Distance and Temperature on Thin-Sheet Steel Double Shear-Bolted Connections. <i>Journal of Structural Engineering</i> , 2020 , 146, 04020120	3		
306	Mode interaction in cold-formed steel members: state-of-art report. Steel Construction, 2020 , 13, 186-20	7 .5	5	
305	Mode interaction in cold-formed steel members: state-of-art report. Steel Construction, 2020, 13, 165-18	5 .5	4	
304	Experimental Study of Square and Rectangular CFDST Sections with Stainless Steel Outer Tubes under Axial Compression. <i>Journal of Structural Engineering</i> , 2019 , 145, 04019139	;	35	

303	Behavior of Octagonal High-Strength Steel Tubular Stub Columns. <i>Journal of Structural Engineering</i> , 2019 , 145, 04019150	3	20
302	Cold-Formed High-Strength Steel Rectangular and Square Hollow Sections under Combined Compression and Bending. <i>Journal of Structural Engineering</i> , 2019 , 145, 04019154	3	11
301	Material properties of normal and high strength aluminium alloys at elevated temperatures. <i>Thin-Walled Structures</i> , 2019 , 137, 463-471	4.7	26
300	Design of CFRP-strengthened stainless steel tubular sections subjected to web crippling. <i>Journal of Constructional Steel Research</i> , 2019 , 159, 442-458	3.8	6
299	Mechanical properties of thin sheet steel after exposure to high temperatures. <i>Thin-Walled Structures</i> , 2019 , 142, 460-475	4.7	8
298	Cold-Formed High-Strength Steel Tubular Structural Members under Combined Bending and Bearing. <i>Journal of Structural Engineering</i> , 2019 , 145, 04019081	3	4
297	Compressive testing and numerical modelling of concrete-filled double skin CHS with austenitic stainless steel outer tubes. <i>Thin-Walled Structures</i> , 2019 , 141, 345-359	4.7	67
296	Compressive strengths of concrete-filled double-skin (circular hollow section outer and square hollow section inner) aluminium tubular sections. <i>Advances in Structural Engineering</i> , 2019 , 22, 2418-243	3 ^{4.9}	4
295	Design of aluminium alloy beams at elevated temperatures. <i>Thin-Walled Structures</i> , 2019 , 140, 506-515	4.7	11
294	Cold-Formed Lean Duplex Stainless Steel Tubular Members under Concentrated Interior Bearing Loads. <i>Journal of Structural Engineering</i> , 2019 , 145, 04019056	3	7
293	Cold-formed high strength steel SHS and RHS beams at elevated temperatures. <i>Journal of Constructional Steel Research</i> , 2019 , 158, 475-485	3.8	17
292	Numerical study and design of aluminium alloy channel section columns with welds. <i>Thin-Walled Structures</i> , 2019 , 139, 139-150	4.7	4
291	Aluminium alloy channels subjected to web crippling. Advances in Structural Engineering, 2019, 22, 1617	-1630	3
290	Behaviour of cold-formed high strength steel RHS under localised bearing forces. <i>Engineering Structures</i> , 2019 , 183, 1049-1058	4.7	14
289	Carbon steel and stainless steel bolted connections undergoing unloading and re-loading processes. <i>Journal of Constructional Steel Research</i> , 2019 , 157, 337-346	3.8	12
288	Cross-sectional capacity of octagonal tubular steel stub columns under uniaxial compression. <i>Engineering Structures</i> , 2019 , 184, 480-494	4.7	22
287	Finite element-based method for residual stresses and plastic strains in cold-formed steel hollow sections. <i>Engineering Structures</i> , 2019 , 188, 24-42	4.7	11
286	Engineering modular integrated construction for high-rise building: a case study in Hong Kong. <i>Proceedings of the Institution of Civil Engineers: Civil Engineering</i> , 2019 , 172, 51-57	0.4	9

285	Behavior of cold-formed steel elliptical hollow sections subjected to bending. <i>Journal of Constructional Steel Research</i> , 2019 , 158, 317-330	3.8	30
284	Experimental investigation of concrete-filled single-skin and double-skin steel oval hollow section stub columns. <i>Thin-Walled Structures</i> , 2019 , 140, 157-167	4.7	8
283	Behavior and design of cold-formed and hot-finished steel elliptical tubular stub columns. <i>Journal of Constructional Steel Research</i> , 2019 , 156, 252-265	3.8	22
282	Structural behavior of cold-formed steel semi-oval hollow section beams. <i>Engineering Structures</i> , 2019 , 185, 400-411	4.7	27
281	Design of austenitic and duplex stainless steel SHS and RHS beam-columns. <i>Journal of Constructional Steel Research</i> , 2019 , 152, 143-153	3.8	6
2 80	Effects of end distance on thin sheet steel bolted connections. Engineering Structures, 2019, 196, 10933	14 .7	11
279	Mechanical properties and cross-sectional behavior of additively manufactured high strength steel tubular sections. <i>Thin-Walled Structures</i> , 2019 , 144, 106158	4.7	29
278	Compression capacities of cold-formed high strength steel tubular T-joints. <i>Journal of Constructional Steel Research</i> , 2019 , 162, 105650	3.8	23
277	The continuous strength method for the design of high strength steel tubular sections in bending. Journal of Constructional Steel Research, 2019 , 160, 499-509	3.8	22
276	Tests of cold-formed high strength steel tubular T-joints. <i>Thin-Walled Structures</i> , 2019 , 143, 106200	4.7	21
275	Finite element analysis of cold-formed lean duplex stainless steel columns at elevated temperatures. <i>Thin-Walled Structures</i> , 2019 , 143, 106203	4.7	9
274	Experimental and numerical investigation of concrete-filled hot-finished and cold-formed steel elliptical tubular stub columns. <i>Thin-Walled Structures</i> , 2019 , 145, 106437	4.7	15
273	Cross-section behavior of cold-formed steel elliptical hollow sections IA numerical study. <i>Engineering Structures</i> , 2019 , 201, 109797	4.7	4
272	Tests of cold-formed steel built-up open section beam-columns 2019 , 1077-1082		1
271	Behavior of double-shear high strength steel bolted connections at elevated temperatures 2019 , 1266-	1270	
270	Recent developments in cold-formed steel structures 2019 , 3-10		
269	Compression Tests of Cold-Formed Steel C- and Z-Sections with Different Stiffeners. <i>Journal of Structural Engineering</i> , 2019 , 145, 04019022	3	11
268	Structural behaviour and design of high strength steel RHS X-joints. <i>Engineering Structures</i> , 2019 , 200, 109494	4.7	14

267	Flexural behaviour and strengths of press-braked S960 ultra-high strength steel channel section beams. <i>Engineering Structures</i> , 2019 , 200, 109735	4.7	29
266	Structural performance of cold-formed steel elliptical hollow section pin-ended columns. <i>Thin-Walled Structures</i> , 2019 , 136, 267-279	4.7	24
265	Material properties and structural behavior of cold-formed steel elliptical hollow section stub columns. <i>Thin-Walled Structures</i> , 2019 , 134, 111-126	4.7	41
264	Web crippling of lean duplex stainless steel tubular sections under concentrated end bearing loads. <i>Thin-Walled Structures</i> , 2019 , 134, 29-39	4.7	13
263	Finite element modelling and design of stainless steel SHS and RHS beam-columns under moment gradients. <i>Thin-Walled Structures</i> , 2019 , 134, 220-232	4.7	5
262	Behaviour of aluminium alloy plain and lipped channel columns. <i>Thin-Walled Structures</i> , 2019 , 135, 306-	3 4 67	12
261	Structural behaviour of cold-formed stainless steel bolted connections at post-fire condition. Journal of Constructional Steel Research, 2019 , 152, 312-321	3.8	10
260	The continuous strength method for the design of high strength steel tubular sections in compression. <i>Engineering Structures</i> , 2018 , 162, 177-187	4.7	31
259	Design of Cold-Formed High-Strength Steel Tubular Stub Columns. <i>Journal of Structural Engineering</i> , 2018 , 144, 04018063	3	29
258	Structural performance of cold-formed lean duplex stainless steel beams at elevated temperatures. <i>Thin-Walled Structures</i> , 2018 , 129, 20-27	4.7	15
257	Design of CFRP-strengthened aluminium alloy tubular sections subjected to web crippling. <i>Thin-Walled Structures</i> , 2018 , 124, 605-621	4.7	3
256	Design of aluminium alloy stocky hollow sections subjected to concentrated transverse loads. <i>Thin-Walled Structures</i> , 2018 , 124, 546-557	4.7	12
255	Design of cold-formed stainless steel circular hollow section columns using direct strength method. Engineering Structures, 2018 , 163, 177-183	4.7	17
254	CFS lipped channel columns affected by L-D-G interaction. Part I: Experimental investigation. <i>Computers and Structures</i> , 2018 , 207, 219-232	4.5	13
253	CFS lipped channel columns affected by L-D-G interaction. Part II: Numerical simulations and design considerations. <i>Computers and Structures</i> , 2018 , 207, 200-218	4.5	9
252	Review: Interactive behaviour, failure and DSM design of cold-formed steel members prone to distortional buckling. <i>Thin-Walled Structures</i> , 2018 , 128, 12-42	4.7	23
251	Finite element analysis and design of cold-formed steel built-up closed section columns with web stiffeners. <i>Thin-Walled Structures</i> , 2018 , 131, 223-237	4.7	47
250	Experimental Investigation of Concrete-Filled High-Strength Steel Tubular X Joints. <i>Journal of Structural Engineering</i> , 2018 , 144, 04018178	3	12

249	Fire resistance of stainless steel single shear bolted connections. <i>Thin-Walled Structures</i> , 2018 , 130, 33	2-346	8
248	Static strength of stainless steel K- and N-joints at elevated temperatures. <i>Thin-Walled Structures</i> , 2018 , 122, 501-509	4.7	15
247	Structural performance of cold-formed high strength steel tubular columns. <i>Engineering Structures</i> , 2018 , 177, 473-488	4.7	24
246	Cross-sectional behavior of cold-formed steel semi-oval hollow sections. <i>Engineering Structures</i> , 2018 , 177, 318-330	4.7	31
245	Experimental and numerical investigation on cold-formed steel semi-oval hollow section compression members. <i>Journal of Constructional Steel Research</i> , 2018 , 151, 174-184	3.8	30
244	Concrete-filled double-skin aluminum circular hollow section stub columns. <i>Thin-Walled Structures</i> , 2018 , 133, 141-152	4.7	16
243	Web crippling of cold-formed ferritic stainless steel square and rectangular hollow sections. <i>Engineering Structures</i> , 2018 , 176, 968-980	4.7	19
242	Design of cold-formed high strength steel tubular sections undergoing web crippling. <i>Thin-Walled Structures</i> , 2018 , 133, 192-205	4.7	24
241	Structural behaviour and design of chord plastification in high strength steel CHS X-joints. <i>Construction and Building Materials</i> , 2018 , 191, 1252-1267	6.7	20
240	Design of concrete-filled high strength steel tubular joints subjected to compression. <i>Journal of Constructional Steel Research</i> , 2018 , 150, 209-220	3.8	8
239	Experimental investigation of cold-formed steel built-up closed section columns with web stiffeners. <i>Journal of Constructional Steel Research</i> , 2018 , 147, 380-392	3.8	40
238	Residual mechanical properties of high strength steels after exposure to fire. <i>Journal of Constructional Steel Research</i> , 2018 , 148, 562-571	3.8	30
237	Material properties and residual stresses of octagonal high strength steel hollow sections. <i>Journal of Constructional Steel Research</i> , 2018 , 148, 479-490	3.8	34
236	Mechanical properties of lean duplex stainless steel at post-fire condition. <i>Thin-Walled Structures</i> , 2018 , 130, 564-576	4.7	14
235	Behaviour and design of cold-formed steel built-up section beams with different screw arrangements. <i>Thin-Walled Structures</i> , 2018 , 131, 16-32	4.7	36
234	Web crippling behaviour of cold-formed steel channel sections with web holes subjected to interior-one-flange loading condition Part II: parametric study and proposed design equations. <i>Thin-Walled Structures</i> , 2017 , 114, 92-106	4.7	28
233	Effects of edge-stiffened circular holes on the web crippling strength of cold-formed steel channel sections under one-flange loading conditions. <i>Engineering Structures</i> , 2017 , 139, 96-107	4.7	24
232	Tests of cold-formed high strength steel tubular sections undergoing web crippling. <i>Engineering Structures</i> , 2017 , 141, 571-583	4.7	26

231	Classification of aluminium alloy cross-sections. <i>Engineering Structures</i> , 2017 , 141, 29-40	4.7	7
230	Web crippling strength of cold-formed stainless-steel lipped channels with web perforations under end-two-flange loading. <i>Advances in Structural Engineering</i> , 2017 , 20, 1845-1863	1.9	15
229	Design of cold-formed stainless steel lipped channel sections with web openings subjected to web crippling under end-one-flange loading condition. <i>Advances in Structural Engineering</i> , 2017 , 20, 1024-104	1 5 9	17
228	Cold-formed ferritic stainless steel tubular structural members subjected to concentrated bearing loads. <i>Engineering Structures</i> , 2017 , 145, 392-405	4.7	37
227	Material properties of cold-formed high strength steel at elevated temperatures. <i>Thin-Walled Structures</i> , 2017 , 115, 289-299	4.7	51
226	Web crippling behaviour of cold-formed steel channel sections with web holes subjected to interior-one-flange loading condition-Part I: Experimental and numerical investigation. <i>Thin-Walled Structures</i> , 2017 , 111, 103-112	4.7	41
225	Design of cold-formed steel built-up sections with web perforations subjected to bending. <i>Thin-Walled Structures</i> , 2017 , 120, 458-469	4.7	32
224	08.19: Tests on concrete-filled double skin tubular beams with circular stainless steel outer tubes. <i>Ce/Papers</i> , 2017 , 1, 1996-2005	0.3	2
223	Post-fire behaviour of ferritic stainless steel material. <i>Construction and Building Materials</i> , 2017 , 157, 654-667	6.7	40
222	08.29: Experimental investigation of concrete-filled double skin tubular stub columns with ferritic stainless steel outer tubes. <i>Ce/Papers</i> , 2017 , 1, 2070-2079	0.3	1
221	Design of cold-formed high strength steel tubular beams. <i>Engineering Structures</i> , 2017 , 151, 432-443	4.7	26
220	12.18: Experimental investigation on cold-formed high strength steel circular hollow sections under combined compression and bending. <i>Ce/Papers</i> , 2017 , 1, 3622-3630	0.3	1
219	10.37: Mechanical properties of high strength aluminium alloy at elevated temperatures. <i>Ce/Papers</i> , 2017 , 1, 2831-2839	0.3	2
218	Tests on high-strength steel hollow sections: a review. <i>Proceedings of the Institution of Civil Engineers: Structures and Buildings</i> , 2017 , 170, 621-630	0.9	24
217	Static strength of high strength steel CHS X-joints under axial compression. <i>Journal of Constructional Steel Research</i> , 2017 , 138, 369-379	3.8	20
216	01.09: Transient state tests of cold-formed stainless steel bolted connections. <i>Ce/Papers</i> , 2017 , 1, 234-2	42 3	
215	Tests of stainless steel RHS X-joints 2017 , 269-276		1
214	Experimental investigation of concrete-filled lean duplex stainless steel RHS stub columns 2017 , 95-100)	2

213	Experimental investigation of concrete-filled cold-formed steel elliptical stub columns 2017, 109-115		4
212	High strength steel tubular X-joints∃n experimental insight under axial compression 2017 , 223-230		1
211	Numerical investigation of web crippling strength in cold-formed stainless steel lipped channels with web openings subjected to interior-two-flange loading condition. <i>Steel and Composite Structures</i> , 2017 , 23, 363-383		17
210	Experimental study on cold-formed steel semi-oval hollow section columns 2017, 549-556		
209	Design of ferritic stainless steel tubular sections subjected to concentrated bearing load 2017 , 513-52	1	1
208	Structural performance of concrete-filled double skin tubular beams with eccentric inner tubes 2017 , 117-123		
207	Tests of concrete-filled high strength steel tubular X-joints under compression 2017 , 137-143		
206	Numerical investigation on static strength of CHS X-joints using S700 and S900 steel 2017 , 475-480		
205	Structural behaviour of octagonal tubular steel stub columns under uniaxial compression 2017 , 567-57	2	
204	Design and tests of cold-formed high strength stainless steel tubular sections subjected to web crippling 2017 , 277-283		O
203	Bearing factors of cold-formed stainless steel double shear bolted connections at elevated temperatures. <i>Thin-Walled Structures</i> , 2016 , 98, 212-229	4.7	24
202	Effect of web holes on web crippling strength of cold-formed steel channel sections under end-one-flange loading condition Part I: Tests and finite element analysis. <i>Thin-Walled Structures</i> , 2016 , 107, 443-452	4.7	54
201	The continuous strength method for the design of aluminium alloy structural elements. <i>Engineering Structures</i> , 2016 , 122, 338-348	4.7	69
200	Flexural response of aluminium alloy SHS and RHS with internal stiffeners. <i>Engineering Structures</i> , 2016 , 121, 170-180	4.7	22
100			
199	Structural performance of stainless steel circular hollow sections under combined axial load and bending [Part 1: Experiments and numerical modelling. <i>Thin-Walled Structures</i> , 2016 , 101, 231-239	4.7	61
198	·	4·7 4·7	56
	bending Part 1: Experiments and numerical modelling. <i>Thin-Walled Structures</i> , 2016 , 101, 231-239 Testing and numerical modelling of austenitic stainless steel CHS beamBolumns. <i>Engineering</i>		

195	Behavior of Cold-Formed Steel Built-Up Sections with Intermediate Stiffeners under Bending. II: Parametric Study and Design. <i>Journal of Structural Engineering</i> , 2016 , 142, 04015151	3	28
194	Behavior of Cold-Formed Steel Built-Up Sections with Intermediate Stiffeners under Bending. I: Tests and Numerical Validation. <i>Journal of Structural Engineering</i> , 2016 , 142, 04015150	3	31
193	Experimental and Numerical Studies of Ferritic Stainless Steel Tubular Cross Sections under Combined Compression and Bending. <i>Journal of Structural Engineering</i> , 2016 , 142, 04015110	3	34
192	Buckling of ferritic stainless steel members under combined axial compression and bending. Journal of Constructional Steel Research, 2016 , 117, 35-48	3.8	56
191	Web crippling strength of cold-formed stainless steel lipped channel-sections with web openings subjected to interior-one-flange loading condition. <i>Steel and Composite Structures</i> , 2016 , 21, 629-659		18
190	Mechanical properties of cold-formed high strength steel at elevated temperatures 2016 , 1022-1027		
189	Experimental study of ferritic stainless steel tubular section beam-columns subjected to moment gradients 2016 , 1106-1112		
188	Local buckling behaviour of stainless steel circular hollow sections under combined axial compressive load and bending moment 2016 , 1119-1125		
187	Web bearing design of aluminium alloy hollow sections 2016 , 1093-1098		
186	Experimental investigation of concrete-filled high strength steel square hollow section members subjected to bending 2016 , 1196-1200		
185	Experimental Study of Ferritic Stainless Steel Tubular Beam-Column Members Subjected to Unequal End Moments. <i>Journal of Structural Engineering</i> , 2016 , 142, 04016091	3	28
184	Behaviour and design of stainless steel SHS and RHS beam-columns. <i>Thin-Walled Structures</i> , 2016 , 106, 330-345	4.7	31
183	Behaviour of composite frames with castellated steel beams at elevated temperatures. <i>Advances in Structural Engineering</i> , 2016 , 19, 1060-1076	1.9	1
182	Effect of web holes on web crippling strength of cold-formed steel channel sections under end-one-flange loading condition - Part II: Parametric study and proposed design equations. <i>Thin-Walled Structures</i> , 2016 , 107, 489-501	4.7	34
181	Experimental investigation of cold-formed high strength steel tubular beams. <i>Engineering Structures</i> , 2016 , 126, 200-209	4.7	48
180	Numerical investigation and design of cold-formed steel built-up open section columns with longitudinal stiffeners. <i>Thin-Walled Structures</i> , 2015 , 89, 178-191	4.7	72
179	Nonlinear analysis of composite castellated beams with profiled steel sheeting exposed to different fire conditions. <i>Journal of Constructional Steel Research</i> , 2015 , 113, 247-260	3.8	14
178	Material properties and residual stresses of cold-formed high strength steel hollow sections. Journal of Constructional Steel Research, 2015 , 109, 152-165	3.8	109

(2014-2015)

177	Experimental Investigation of Aluminum Alloy Stub Columns with Circular Openings. <i>Journal of Structural Engineering</i> , 2015 , 141, 04015031	3	24
176	Design of Cold-Formed Lean Duplex Stainless Steel Members in Combined Compression and Bending. <i>Journal of Structural Engineering</i> , 2015 , 141, 04014138	3	20
175	Beam tests of cold-formed steel built-up sections with web perforations. <i>Journal of Constructional Steel Research</i> , 2015 , 115, 18-33	3.8	39
174	Theoretical analysis of cold-formed stainless steel tubular joints. <i>Engineering Structures</i> , 2015 , 83, 99-11	1 5 4.7	28
173	High temperature tests of cold-formed stainless steel double shear bolted connections. <i>Journal of Constructional Steel Research</i> , 2015 , 104, 49-63	3.8	21
172	Assessment of Eurocode 9 slenderness limits for elements in compression 2015 , 569-574		2
171	Material Properties of Cold-Formed and Hot-Finished Elliptical Hollow Sections. <i>Advances in Structural Engineering</i> , 2015 , 18, 1101-1114	1.9	20
170	Continuous Beams of Aluminum Alloy Tubular Cross Sections. II: Parametric Study and Design. <i>Journal of Structural Engineering</i> , 2015 , 141, 04014233	3	11
169	Behaviour and Design of Composite Beams with Stiffened and Unstiffened Web Openings. <i>Advances in Structural Engineering</i> , 2015 , 18, 893-918	1.9	6
168	Continuous Beams of Aluminum Alloy Tubular Cross Sections. I: Tests and FE Model Validation. Journal of Structural Engineering, 2015 , 141, 04014232	3	17
167	Local D istortional Interaction in Cold-formed Steel Columns: Mechanics, Testing, Numerical Simulation and Design. <i>Structures</i> , 2015 , 4, 38-57	3.4	8
166	Behaviour of structural stainless steel cross-sections under combined loading [Part I: Experimental study. <i>Engineering Structures</i> , 2015 , 89, 236-246	4.7	89
165	Behaviour of structural stainless steel cross-sections under combined loading [Part II: Numerical modelling and design approach. <i>Engineering Structures</i> , 2015 , 89, 247-259	4.7	70
164	Cross-section classification for cold-formed and built-up high strength carbon and stainless steel tubes under compression. <i>Journal of Constructional Steel Research</i> , 2015 , 106, 289-295	3.8	40
163	Behaviour of eccentrically loaded ferritic stainless steel stub columns 2015 , 279-286		
162	Finite Element Modeling 2014 , 31-55		4
161	Design of cold-formed steel channels with stiffened webs subjected to bending. <i>Thin-Walled Structures</i> , 2014 , 85, 81-92	4.7	42
160	Transient state tests of cold-formed stainless steel single shear bolted connections. <i>Engineering Structures</i> , 2014 , 81, 1-9	4.7	15

159	Behavior of cold-formed stainless steel single shear bolted connections at elevated temperatures. <i>Thin-Walled Structures</i> , 2014 , 75, 63-75	4.7	33
158	Deformation-based design of aluminium alloy beams. <i>Engineering Structures</i> , 2014 , 80, 339-349	4.7	65
157	FRP strengthening of lean duplex stainless steel hollow sections subjected to web crippling. <i>Thin-Walled Structures</i> , 2014 , 85, 183-200	4.7	13
156	StressEtrain relationship of cold-formed lean duplex stainless steel at elevated temperatures. Journal of Constructional Steel Research, 2014, 92, 103-113	3.8	28
155	Localdistortional interaction in cold-formed steel rack-section columns. <i>Thin-Walled Structures</i> , 2014 , 81, 185-194	4.7	35
154	Experimental investigation of cold-formed lean duplex stainless steel beam-columns. <i>Thin-Walled Structures</i> , 2014 , 76, 105-117	4.7	64
153	Tests of cold-formed duplex stainless steel SHS beamBolumns. Engineering Structures, 2014, 74, 111-12	14.7	33
152	Examples of Finite Element Models of Metal Beams 2014 , 115-150		
151	Examples of Finite Element Models of Metal Columns 2014 , 72-114		
150	Examples of Finite Element Models of Metal Tubular Connections 2014 , 151-181		1
150 149	Examples of Finite Element Models of Metal Tubular Connections 2014 , 151-181 Linear and Nonlinear Finite Element Analyses 2014 , 56-71		1
			1
149	Linear and Nonlinear Finite Element Analyses 2014 , 56-71	3	60
149 148	Linear and Nonlinear Finite Element Analyses 2014 , 56-71 Design Examples of Metal Tubular Connections 2014 , 182-205 Testing and Design of Aluminum Alloy Cross Sections in Compression. <i>Journal of Structural</i>	3.8	
149 148 147	Linear and Nonlinear Finite Element Analyses 2014, 56-71 Design Examples of Metal Tubular Connections 2014, 182-205 Testing and Design of Aluminum Alloy Cross Sections in Compression. <i>Journal of Structural Engineering</i> , 2014, 140, 04014047		60
149 148 147 146	Linear and Nonlinear Finite Element Analyses 2014, 56-71 Design Examples of Metal Tubular Connections 2014, 182-205 Testing and Design of Aluminum Alloy Cross Sections in Compression. <i>Journal of Structural Engineering</i> , 2014, 140, 04014047 The art of coupon tests. <i>Journal of Constructional Steel Research</i> , 2014, 96, 159-175 Strength, interactive failure and design of web-stiffened lipped channel columns exhibiting	3.8	60
149 148 147 146	Linear and Nonlinear Finite Element Analyses 2014, 56-71 Design Examples of Metal Tubular Connections 2014, 182-205 Testing and Design of Aluminum Alloy Cross Sections in Compression. Journal of Structural Engineering, 2014, 140, 04014047 The art of coupon tests. Journal of Constructional Steel Research, 2014, 96, 159-175 Strength, interactive failure and design of web-stiffened lipped channel columns exhibiting distortional buckling. Thin-Walled Structures, 2014, 81, 195-209 Structural performance of cold-formed lean duplex stainless steel columns. Thin-Walled Structures,	3.8	60 171 20

(2012-2013)

141	Fire resistance of concrete-filled high strength steel tubular columns. <i>Thin-Walled Structures</i> , 2013 , 71, 46-56	4.7	43	
140	Strengthening of ferritic stainless steel tubular structural members using FRP subjected to Two-Flange-Loading. <i>Thin-Walled Structures</i> , 2013 , 62, 179-190	4.7	11	
139	Tests of pin-ended cold-formed lean duplex stainless steel columns. <i>Journal of Constructional Steel Research</i> , 2013 , 82, 203-215	3.8	45	
138	Web crippling behaviour of cold-formed duplex stainless steel tubular sections at elevated temperatures. <i>Engineering Structures</i> , 2013 , 57, 51-62	4.7	24	
137	Stress concentration factors of cold-formed stainless steel tubular X-joints. <i>Journal of Constructional Steel Research</i> , 2013 , 91, 26-41	3.8	35	
136	Reinforcement schemes for cold-formed steel joists with a large web opening in shear zoneAn experimental investigation. <i>Thin-Walled Structures</i> , 2013 , 72, 28-36	4.7	5	
135	Experimental and numerical investigation of cold-formed lean duplex stainless steel flexural members. <i>Thin-Walled Structures</i> , 2013 , 73, 216-228	4.7	76	
134	Cold-Formed Steel Lipped Channel Columns Influenced by Local-Distortional Interaction: Strength and DSM Design. <i>Journal of Structural Engineering</i> , 2013 , 139, 1059-1074	3	43	
133	Cold-formed high strength stainless steel cross-sections in compression considering interaction effects of constituent plate elements. <i>Journal of Constructional Steel Research</i> , 2013 , 80, 32-41	3.8	23	
132	Continuous Strength Method for Aluminium Alloy Structures. <i>Advanced Materials Research</i> , 2013 , 742, 70-75	0.5	8	
131	Effects of Elevated Temperatures on Double Shear Bolted Connections of Thin Sheet Steels. Journal of Structural Engineering, 2013 , 139, 757-771	3	8	
130	A linear one-dimensional model for the flexural-torsional vibrations of tapered thin-walled bars with open cross-secti 2013 , 415-416		2	
129	Design of Z-section purlins under combined axial compression and bending 2013 , 429-430		1	
128	Screwed connections of thin sheet steels at elevated temperatures IPart II: Transient state tests. <i>Engineering Structures</i> , 2012 , 35, 228-233	4.7	15	
127	Design of cold-formed stainless steel tubular joints at elevated temperatures. <i>Engineering Structures</i> , 2012 , 35, 188-202	4.7	33	
126	Screwed connections of thin sheet steels at elevated temperatures IPart I: Steady state tests. <i>Engineering Structures</i> , 2012 , 35, 234-243	4.7	30	
125	Web crippling behaviour of cold-formed steel channel sections with offset web holes subjected to interior-two-flange loading. <i>Thin-Walled Structures</i> , 2012 , 50, 76-86	4.7	62	
124	Numerical analysis and design of concrete-filled aluminum circular hollow section columns. <i>Thin-Walled Structures</i> , 2012 , 50, 45-55	4.7	23	

123	Compression tests of cold-formed steel I-shaped open sections with edge and web stiffeners. <i>Thin-Walled Structures</i> , 2012 , 52, 1-11	4.7	81
122	Bearing factors for single shear bolted connections of thin sheet steels at elevated temperatures. <i>Thin-Walled Structures</i> , 2012 , 52, 126-142	4.7	12
121	Material properties of cold-formed lean duplex stainless steel sections. <i>Thin-Walled Structures</i> , 2012 , 54, 72-81	4.7	98
120	Cold-formed steel sections with web openings subjected to web crippling under two-flange loading conditions Part II: Parametric study and proposed design equations. <i>Thin-Walled Structures</i> , 2012 , 56, 79-87	4.7	47
119	Cold-formed steel sections with web openings subjected to web crippling under two-flange loading conditionspart I: Tests and finite element analysis. <i>Thin-Walled Structures</i> , 2012 , 56, 38-48	4.7	67
118	Design of cold-formed steel oval hollow section columns. <i>Journal of Constructional Steel Research</i> , 2012 , 71, 26-37	3.8	38
117	Web crippling of aluminium tubular structural members strengthened by CFRP. <i>Thin-Walled Structures</i> , 2012 , 59, 58-69	4.7	13
116	Ferritic stainless steel tubular members strengthened with high modulus CFRP plate subjected to web crippling. <i>Journal of Constructional Steel Research</i> , 2012 , 77, 107-118	3.8	16
115	3D Visualization of Structures Using Finite-Element Analysis in Teaching. <i>Journal of Professional Issues in Engineering Education and Practice</i> , 2012 , 138, 131-138	0.7	12
114	Lean Duplex Stainless Steel Tubular Members Strengthened with CFRP Plate Subjected to Web Crippling. <i>Applied Mechanics and Materials</i> , 2012 , 166-169, 1644-1656	0.3	
113	Numerical Investigation of the Bilinear Softening Law in the Cohesive Crack Model for Normal-Strength and High-Strength Concrete. <i>Advances in Structural Engineering</i> , 2012 , 15, 373-387	1.9	9
112	Ultimate Compressive Strength of Cold-Formed Steel Angle Struts Loaded through a Single Bolt. <i>Advances in Structural Engineering</i> , 2012 , 15, 1583-1595	1.9	3
111	Web crippling of ferritic stainless steel tubular members strengthened with high modulus CFRP plate 2012 , 415-421		
110	Eccentric compression tests on high strength duplex stainless steel columns 2012, 431-438		1
109	Compression tests of aluminium alloy cross-sections 2012 , 501-508		4
108	Behaviour of cold-formed lean duplex stainless steel sections 2012 , 399-405		1
107	Investigation of concrete-filled aluminum circular hollow section columns 2012, 493-500		
106	Numerical modeling and design of cold-formed steel oval hollow section compression members 2012 , 275-281		

105	Tests of single shear bolted connections of thin sheet steels at elevated temperatures P art II: Transient state tests. <i>Thin-Walled Structures</i> , 2011 , 49, 1334-1340	4.7	12
104	Tests of single shear bolted connections of thin sheet steels at elevated temperatures P art I: Steady state tests. <i>Thin-Walled Structures</i> , 2011 , 49, 1320-1333	4.7	21
103	FRP strengthened aluminium tubular sections subjected to web crippling. <i>Thin-Walled Structures</i> , 2011 , 49, 1392-1403	4.7	19
102	Design formulations for non-welded and welded aluminium columns using Continuous Strength Method. <i>Engineering Structures</i> , 2011 , 33, 3197-3207	4.7	16
101	An Experimental Study on the Mechanical Properties of Pultruded CFRP Plates at Elevated Temperatures 2011 ,		2
100	Performance of axially restrained concrete encased steel composite columns at elevated temperatures. <i>Engineering Structures</i> , 2011 , 33, 245-254	4.7	34
99	Mechanical properties of pultruded carbon fibre-reinforced polymer (CFRP) plates at elevated temperatures. <i>Engineering Structures</i> , 2011 , 33, 2154-2161	4.7	132
98	Numerical simulation of concrete encased steel composite columns. <i>Journal of Constructional Steel Research</i> , 2011 , 67, 211-222	3.8	83
97	Design of cold-formed stainless steel tubular T- and X-joints. <i>Journal of Constructional Steel Research</i> , 2011 , 67, 421-436	3.8	35
96	Response to Discussion on Numerical simulation of concrete encased steel composite columns[J Constr Steel Res 2011; 67(2): 211[2]. <i>Journal of Constructional Steel Research</i> , 2011 , 67, 1413	3.8	1
95	Eccentrically loaded concrete encased steel composite columns. <i>Thin-Walled Structures</i> , 2011 , 49, 53-65	4.7	31
94	Cold-Formed-Steel Oval Hollow Sections under Axial Compression. <i>Journal of Structural Engineering</i> , 2011 , 137, 719-727	3	29
93	Effect of Surface Preparation on the Strength of FRP-to-Mild Steel and FRP-to-Stainless Steel Joints 2011 , 869-872		8
92	Design of Concrete-Filled Stainless Steel Tubular Connections. <i>Advances in Structural Engineering</i> , 2010 , 13, 471-492	1.9	21
91	Investigation of concrete encased steel composite columns at elevated temperatures. <i>Thin-Walled Structures</i> , 2010 , 48, 597-608	4.7	23
90	Tests and behaviour of cold-formed stainless steel tubular X-joints. <i>Thin-Walled Structures</i> , 2010 , 48, 921-934	4.7	32
89	Web crippling of aluminium tubes with perforated webs. <i>Engineering Structures</i> , 2010 , 32, 1397-1410	4.7	45
88	Compression resistance of aluminium stub columns using Continuous Strength Method 2010 , 257-263		1

87	Effects of different adhesive and FRP on strengthening of stainless steel tubular structural members 2010 , 273-280		2
86	Compression members of cold-formed steel oval hollow sections 2010 , 341-347		
85	Column tests of concrete-filled aluminium tubular sections 2010 , 233-239		
84	Tests and Design of Aluminum Tubular Sections Subjected to Concentrated Bearing Load. <i>Journal of Structural Engineering</i> , 2009 , 135, 806-817	3	17
83	Behaviour of concrete-filled stainless steel tubular X-joints subjected to compression. <i>Thin-Walled Structures</i> , 2009 , 47, 365-374	4.7	51
82	Concrete-filled aluminum circular hollow section column tests. <i>Thin-Walled Structures</i> , 2009 , 47, 1272-	12. <u>8.9</u>	33
81	On the use of the EC3 and AISI specifications to estimate the ultimate load of CFRP-strengthened cold-formed steel lipped channel columns. <i>Thin-Walled Structures</i> , 2009 , 47, 1102-1111	4.7	11
80	Design of Aluminum Alloy Flexural Members Using Direct Strength Method. <i>Journal of Structural Engineering</i> , 2009 , 135, 558-566	3	48
79	Design of Cold-Formed Steel Built-Up Closed Sections with Intermediate Stiffeners. <i>Journal of Structural Engineering</i> , 2008 , 134, 727-737	3	86
78	Web Crippling of Cold-Formed Stainless Steel Tubular Sections. <i>Advances in Structural Engineering</i> , 2008 , 11, 679-691	1.9	16
77	Performance of cold-formed stainless steel tubular columns at elevated temperatures. <i>Engineering Structures</i> , 2008 , 30, 2012-2021	4.7	26
76	Experimental and numerical investigation of high strength stainless steel structures. <i>Journal of Constructional Steel Research</i> , 2008 , 64, 1225-1230	3.8	25
75	Experimental investigation of cold-formed stainless steel tubular T-joints. <i>Thin-Walled Structures</i> , 2008 , 46, 1129-1142	4.7	34
74	Design of high strength steel columns at elevated temperatures. <i>Journal of Constructional Steel Research</i> , 2008 , 64, 689-703	3.8	66
73	Column tests of cold-formed steel non-symmetric lipped angle sections. <i>Journal of Constructional Steel Research</i> , 2008 , 64, 808-815	3.8	22
72	Tests of concrete-filled stainless steel tubular T-joints. <i>Journal of Constructional Steel Research</i> , 2008 , 64, 1283-1293	3.8	59
71	Non-linear behaviour and load-carrying capacity of CFRP-strengthened lipped channel steel columns. <i>Engineering Structures</i> , 2008 , 30, 2613-2630	4.7	71
70	Aluminum tubular sections subjected to web crippling B art II: Proposed design equations. <i>Thin-Walled Structures</i> , 2008 , 46, 352-361	4.7	22

69	Aluminum tubular sections subjected to web cripplingPart I:. <i>Thin-Walled Structures</i> , 2008 , 46, 339-351	4.7	35
68	Tests of concrete-filled aluminum stub columns. <i>Thin-Walled Structures</i> , 2008 , 46, 573-583	4.7	35
67	Research on cold-formed steel columns. <i>Thin-Walled Structures</i> , 2008 , 46, 731-740	4.7	16
66	Numerical investigation and design of aluminum alloy circular hollow section columns. <i>Thin-Walled Structures</i> , 2008 , 46, 1437-1449	4.7	37
65	Effects of transverse welds on aluminum alloy columns. <i>Thin-Walled Structures</i> , 2007 , 45, 321-329	4.7	19
64	Design of cold-formed steel unequal angle compression members. <i>Thin-Walled Structures</i> , 2007 , 45, 330	D-₄3. 3 8	32
63	Effects of elevated temperatures on bolted moment-connections between cold-formed steel members. <i>Engineering Structures</i> , 2007 , 29, 2419-2427	4.7	25
62	Cold-formed steel lipped channel columns at elevated temperatures. <i>Engineering Structures</i> , 2007 , 29, 2445-2456	4.7	49
61	Experimental and numerical investigations of cold-formed stainless steel tubular sections subjected to concentrated bearing load. <i>Journal of Constructional Steel Research</i> , 2007 , 63, 1452-1466	3.8	55
60	Experimental investigation of cold-formed steel material at elevated temperatures. <i>Thin-Walled Structures</i> , 2007 , 45, 96-110	4.7	121
59	Cold-Formed High-Strength Stainless Steel Tubular Sections Subjected to Web Crippling. <i>Journal of Structural Engineering</i> , 2007 , 133, 368-377	3	47
58	Experimental Investigation of Cold-Formed High-Strength Stainless Steel Tubular Members Subjected to Combined Bending and Web Crippling. <i>Journal of Structural Engineering</i> , 2007 , 133, 1027-	1 <i>0</i> 34	22
57	Investigation of cold-formed stainless steel non-slender circular hollow section columns. <i>Steel and Composite Structures</i> , 2007 , 7, 321-337		15
56	Aluminum alloy circular hollow section beam-columns. <i>Thin-Walled Structures</i> , 2006 , 44, 131-140	4.7	20
55	Nonlinear analysis of concrete-filled steel SHS and RHS columns. <i>Thin-Walled Structures</i> , 2006 , 44, 919-9	9 3 107	88
54	Experimental investigation of concrete-filled cold-formed high strength stainless steel tube columns. <i>Journal of Constructional Steel Research</i> , 2006 , 62, 484-492	3.8	162
53	Strength and Behavior of Cold-Formed Steel Z -Sections Subjected to Major Axis Bending. <i>Journal of Structural Engineering</i> , 2006 , 132, 1632-1640	3	8
52	Finite-Element Simulation and Design of Cold-Formed Steel Channels Subjected to Web Crippling. Journal of Structural Engineering, 2006 , 132, 1967-1975	3	31

51	Cold-Formed Stainless Steel Sections Subjected to Web Crippling. <i>Journal of Structural Engineering</i> , 2006 , 132, 134-144	3	50
50	Behavior of High Strength Structural Steel at Elevated Temperatures. <i>Journal of Structural Engineering</i> , 2006 , 132, 1948-1954	3	209
49	Tests and Design of Aluminum Alloy Compression Members. <i>Journal of Structural Engineering</i> , 2006 , 132, 1096-1107	3	36
48	Experimental Investigation of Aluminum Alloy Thin-Walled Tubular Members in Combined Compression and Bending. <i>Journal of Structural Engineering</i> , 2006 , 132, 1955-1966	3	23
47	Experimental investigation of aluminum alloy circular hollow section columns. <i>Engineering Structures</i> , 2006 , 28, 207-215	4.7	40
46	StressEtrain curves for stainless steel at elevated temperatures. <i>Engineering Structures</i> , 2006 , 28, 229-2	3. 9 .7	183
45	Design and behaviour of concrete-filled cold-formed stainless steel tube columns. <i>Engineering Structures</i> , 2006 , 28, 716-728	4.7	132
44	Yield line mechanism analysis on web crippling of cold-formed stainless steel tubular sections under two-flange loading. <i>Engineering Structures</i> , 2006 , 28, 880-892	4.7	22
43	Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns. Journal of Constructional Steel Research, 2006 , 62, 706-715	3.8	273
42	Performance of shear connection in composite beams with profiled steel sheeting. <i>Journal of Constructional Steel Research</i> , 2006 , 62, 682-694	3.8	78
41	Corner properties of cold-formed steel sections at elevated temperatures. <i>Thin-Walled Structures</i> , 2006 , 44, 216-223	4.7	29
40	Tests of cold-formed high strength stainless steel compression members. <i>Thin-Walled Structures</i> , 2006 , 44, 224-234	4.7	55
39	Analysis and design of cold-formed steel channels subjected to combined bending and web crippling. <i>Thin-Walled Structures</i> , 2006 , 44, 314-320	4.7	27
38	Aluminum alloy tubular columns P art I: Finite element modeling and test verification. <i>Thin-Walled Structures</i> , 2006 , 44, 961-968	4.7	31
37	Aluminum alloy tubular columns P art II: Parametric study and design using direct strength method. <i>Thin-Walled Structures</i> , 2006 , 44, 969-985	4.7	33
36	Column design of cold-formed stainless steel slender circular hollow sections. <i>Steel and Composite Structures</i> , 2006 , 6, 285-302		27
35	Behavior of Cold-Formed Steel Plain Angle Columns. <i>Journal of Structural Engineering</i> , 2005 , 131, 457-4	66	111
34	Experimental Investigation of Cold-Formed Steel Lipped Angle Concentrically Loaded Compression Members. <i>Journal of Structural Engineering</i> , 2005 , 131, 1390-1396	3	29

(2003-2005)

33	Buckling Analysis of Cold-Formed Steel Lipped Angle Columns. <i>Journal of Structural Engineering</i> , 2005 , 131, 1570-1579	3	42
32	Tests of cold-formed stainless steel tubular flexural members. <i>Thin-Walled Structures</i> , 2005 , 43, 1325-1	34 <i>7</i> 7	52
31	Structural performance of cold-formed high strength stainless steel columns. <i>Journal of Constructional Steel Research</i> , 2005 , 61, 1631-1649	3.8	99
30	Behavior of Cold-Formed High Strength Stainless Steel Sections. <i>Journal of Structural Engineering</i> , 2005 , 131, 1738-1745	3	110
29	EXPERIMENTAL INVESTIGATION OF COLD-FORMED HIGH STRENGTH STAINLESS STEEL COMPRESSION MEMBERS 2005 ,		5
28	Local buckling and shift of effective centroid of cold-formed steel columns. <i>Steel and Composite Structures</i> , 2005 , 5, 235-246		4
27	Finite element analysis of cold-formed steel lipped angle compression members 2005, 469-478		2
26	Design and tests of cold-formed stainless steel sections subjected to concentrated bearing load 2005 , 487-496		2
25	Design of Cold-Formed Steel Channel Columns with Complex Edge Stiffeners by Direct Strength Method. <i>Journal of Structural Engineering</i> , 2004 , 130, 1756-1763	3	14
24	Design of channel columns with inclined edge stiffeners. <i>Journal of Constructional Steel Research</i> , 2004 , 60, 183-197	3.8	21
23	Numerical investigation of channel columns with complex stiffenerspart I: test verification. <i>Thin-Walled Structures</i> , 2004 , 42, 883-893	4.7	20
22	Numerical investigation of channel columns with complex stiffenerspart II: parametric study and design. <i>Thin-Walled Structures</i> , 2004 , 42, 895-909	4.7	9
21	Web crippling of cold-formed unlipped channels with flanges restrained. <i>Thin-Walled Structures</i> , 2004 , 42, 911-930	4.7	19
20	Bifurcation analysis of thin-walled plain channel compression members. <i>Finite Elements in Analysis and Design</i> , 2004 , 41, 211-225	2.2	10
19	Tests and Design of Fixed-Ended Cold-Formed Steel Plain Angle Columns. <i>Journal of Structural Engineering</i> , 2004 , 130, 1931-1940	3	64
18	Compression Tests of Channels with Inclined Simple Edge Stiffeners. <i>Journal of Structural Engineering</i> , 2003 , 129, 1403-1411	3	31
17	Measurement techniques in the testing of thin-walled structural members. <i>Experimental Mechanics</i> , 2003 , 43, 32-38	2.6	10
16	Buckling of stainless steel square hollow section compression members. <i>Journal of Constructional Steel Research</i> , 2003 , 59, 165-177	3.8	86

15	Cold-Formed Steel Channels Subjected to Concentrated Bearing Load. <i>Journal of Structural Engineering</i> , 2003 , 129, 1003-1010	3	15
14	Experimental Investigation of Cold-Formed Stainless Steel Columns. <i>Journal of Structural Engineering</i> , 2003 , 129, 169-176	3	70
13	Finite element analysis and design of fixed-ended plain channel columns. <i>Finite Elements in Analysis and Design</i> , 2002 , 38, 549-566	2.2	35
12	Column Tests of Cold-Formed Steel Channels with Complex Stiffeners. <i>Journal of Structural Engineering</i> , 2002 , 128, 737-745	3	43
11	Compression Tests of Stainless Steel Tubular Members. <i>Journal of Structural Engineering</i> , 2002 , 128, 75	4 3 761	70
10	Channel Columns Undergoing Local, Distortional, and Overall Buckling. <i>Journal of Structural Engineering</i> , 2002 , 128, 728-736	3	29
9	Tests of Channels Subjected to Combined Bending and Web Crippling. <i>Journal of Structural Engineering</i> , 2002 , 128, 300-308	3	14
8	Tests of X- and K-Joints in SHS Stainless Steel Tubes. <i>Journal of Structural Engineering</i> , 2001 , 127, 1173-	1482	40
7	Design of Cold-Formed Channels Subjected to Web Crippling. <i>Journal of Structural Engineering</i> , 2001 , 127, 1137-1144	3	88
6	Inelastic bifurcation of cold-formed singly symmetric columns. <i>Thin-Walled Structures</i> , 2000 , 36, 213-230	04.7	7
5	Shift of Effective Centroid of Channel Columns. <i>Journal of Structural Engineering</i> , 1999 , 125, 524-531	3	42
4	Behaviour of cold-formed singly symmetric columns. <i>Thin-Walled Structures</i> , 1999 , 33, 83-102	4.7	30
3	Design of Lipped Channel Columns. <i>Journal of Structural Engineering</i> , 1998 , 124, 140-148	3	69
2	Tests of Fixed-Ended Plain Channel Columns. <i>Journal of Structural Engineering</i> , 1998 , 124, 131-139	3	65
1	Bifurcation of singly symmetric columns. <i>Thin-Walled Structures</i> , 1997 , 28, 155-177	4.7	25