Ben Young

List of Publications by Citations

Source: https://exaly.com/author-pdf/8217180/ben-young-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

374 papers 9,610 50 h-index g-index

399 ext. papers ext. citations 3.9 avg, IF 7.34 L-index

#	Paper	IF	Citations
374	Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns. Journal of Constructional Steel Research, 2006 , 62, 706-715	3.8	273
373	Behavior of High Strength Structural Steel at Elevated Temperatures. <i>Journal of Structural Engineering</i> , 2006 , 132, 1948-1954	3	209
372	StressEtrain curves for stainless steel at elevated temperatures. <i>Engineering Structures</i> , 2006 , 28, 229-2	3 .9.7	183
371	The art of coupon tests. Journal of Constructional Steel Research, 2014, 96, 159-175	3.8	171
370	Experimental investigation of concrete-filled cold-formed high strength stainless steel tube columns. <i>Journal of Constructional Steel Research</i> , 2006 , 62, 484-492	3.8	162
369	Mechanical properties of pultruded carbon fibre-reinforced polymer (CFRP) plates at elevated temperatures. <i>Engineering Structures</i> , 2011 , 33, 2154-2161	4.7	132
368	Design and behaviour of concrete-filled cold-formed stainless steel tube columns. <i>Engineering Structures</i> , 2006 , 28, 716-728	4.7	132
367	Experimental investigation of cold-formed steel material at elevated temperatures. <i>Thin-Walled Structures</i> , 2007 , 45, 96-110	4.7	121
366	Behavior of Cold-Formed Steel Plain Angle Columns. <i>Journal of Structural Engineering</i> , 2005 , 131, 457-4	6 6	111
365	Behavior of Cold-Formed High Strength Stainless Steel Sections. <i>Journal of Structural Engineering</i> , 2005 , 131, 1738-1745	3	110
364	Material properties and residual stresses of cold-formed high strength steel hollow sections. Journal of Constructional Steel Research, 2015, 109, 152-165	3.8	109
363	Structural performance of cold-formed high strength stainless steel columns. <i>Journal of Constructional Steel Research</i> , 2005 , 61, 1631-1649	3.8	99
362	Material properties of cold-formed lean duplex stainless steel sections. <i>Thin-Walled Structures</i> , 2012 , 54, 72-81	4.7	98
361	Behaviour of structural stainless steel cross-sections under combined loading Part I: Experimental study. <i>Engineering Structures</i> , 2015 , 89, 236-246	4.7	89
360	Nonlinear analysis of concrete-filled steel SHS and RHS columns. <i>Thin-Walled Structures</i> , 2006 , 44, 919-9	93 ₄ 0 ₇	88
359	Design of Cold-Formed Channels Subjected to Web Crippling. <i>Journal of Structural Engineering</i> , 2001 , 127, 1137-1144	3	88
358	Experimental Investigation on Stub-Column Behavior of Cold-Formed High-Strength Steel Tubular Sections. <i>Journal of Structural Engineering</i> , 2016 , 142, 04015174	3	87

(1998-2008)

357	Design of Cold-Formed Steel Built-Up Closed Sections with Intermediate Stiffeners. <i>Journal of Structural Engineering</i> , 2008 , 134, 727-737	3	86	
356	Buckling of stainless steel square hollow section compression members. <i>Journal of Constructional Steel Research</i> , 2003 , 59, 165-177	3.8	86	
355	Numerical simulation of concrete encased steel composite columns. <i>Journal of Constructional Steel Research</i> , 2011 , 67, 211-222	3.8	83	
354	Compression tests of cold-formed steel I-shaped open sections with edge and web stiffeners. <i>Thin-Walled Structures</i> , 2012 , 52, 1-11	4.7	81	
353	Performance of shear connection in composite beams with profiled steel sheeting. <i>Journal of Constructional Steel Research</i> , 2006 , 62, 682-694	3.8	78	
352	Experimental and numerical investigation of cold-formed lean duplex stainless steel flexural members. <i>Thin-Walled Structures</i> , 2013 , 73, 216-228	4.7	76	
351	Numerical investigation and design of cold-formed steel built-up open section columns with longitudinal stiffeners. <i>Thin-Walled Structures</i> , 2015 , 89, 178-191	4.7	72	
350	Non-linear behaviour and load-carrying capacity of CFRP-strengthened lipped channel steel columns. <i>Engineering Structures</i> , 2008 , 30, 2613-2630	4.7	71	
349	Behaviour of structural stainless steel cross-sections under combined loading [Part II: Numerical modelling and design approach. <i>Engineering Structures</i> , 2015 , 89, 247-259	4.7	70	
348	Experimental Investigation of Cold-Formed Stainless Steel Columns. <i>Journal of Structural Engineering</i> , 2003 , 129, 169-176	3	70	
347	Compression Tests of Stainless Steel Tubular Members. <i>Journal of Structural Engineering</i> , 2002 , 128, 75	4 ₃ 761	70	
346	The continuous strength method for the design of aluminium alloy structural elements. <i>Engineering Structures</i> , 2016 , 122, 338-348	4.7	69	
345	Design of Lipped Channel Columns. <i>Journal of Structural Engineering</i> , 1998 , 124, 140-148	3	69	
344	Compressive testing and numerical modelling of concrete-filled double skin CHS with austenitic stainless steel outer tubes. <i>Thin-Walled Structures</i> , 2019 , 141, 345-359	4.7	67	
343	Cold-formed steel sections with web openings subjected to web crippling under two-flange loading conditions part I: Tests and finite element analysis. <i>Thin-Walled Structures</i> , 2012 , 56, 38-48	4.7	67	
342	Design of high strength steel columns at elevated temperatures. <i>Journal of Constructional Steel Research</i> , 2008 , 64, 689-703	3.8	66	
341	Deformation-based design of aluminium alloy beams. <i>Engineering Structures</i> , 2014 , 80, 339-349	4.7	65	
340	Tests of Fixed-Ended Plain Channel Columns. <i>Journal of Structural Engineering</i> , 1998 , 124, 131-139	3	65	

339	Experimental investigation of cold-formed lean duplex stainless steel beam-columns. <i>Thin-Walled Structures</i> , 2014 , 76, 105-117	4.7	64
338	Tests and Design of Fixed-Ended Cold-Formed Steel Plain Angle Columns. <i>Journal of Structural Engineering</i> , 2004 , 130, 1931-1940	3	64
337	Web crippling behaviour of cold-formed steel channel sections with offset web holes subjected to interior-two-flange loading. <i>Thin-Walled Structures</i> , 2012 , 50, 76-86	4.7	62
336	Structural performance of stainless steel circular hollow sections under combined axial load and bending [Part 1: Experiments and numerical modelling. <i>Thin-Walled Structures</i> , 2016 , 101, 231-239	4.7	61
335	Testing and Design of Aluminum Alloy Cross Sections in Compression. <i>Journal of Structural Engineering</i> , 2014 , 140, 04014047	3	60
334	Tests of concrete-filled stainless steel tubular T-joints. <i>Journal of Constructional Steel Research</i> , 2008 , 64, 1283-1293	3.8	59
333	Testing and numerical modelling of austenitic stainless steel CHS beamBolumns. <i>Engineering Structures</i> , 2016 , 111, 263-274	4.7	56
332	Buckling of ferritic stainless steel members under combined axial compression and bending. Journal of Constructional Steel Research, 2016, 117, 35-48	3.8	56
331	Experimental and numerical investigations of cold-formed stainless steel tubular sections subjected to concentrated bearing load. <i>Journal of Constructional Steel Research</i> , 2007 , 63, 1452-1466	3.8	55
330	Tests of cold-formed high strength stainless steel compression members. <i>Thin-Walled Structures</i> , 2006 , 44, 224-234	4.7	55
329	Effect of web holes on web crippling strength of cold-formed steel channel sections under end-one-flange loading condition Part I: Tests and finite element analysis. <i>Thin-Walled Structures</i> , 2016 , 107, 443-452	4.7	54
328	Tests of cold-formed stainless steel tubular flexural members. <i>Thin-Walled Structures</i> , 2005 , 43, 1325-1	3.4 <i>7</i> 7	52
327	Material properties of cold-formed high strength steel at elevated temperatures. <i>Thin-Walled Structures</i> , 2017 , 115, 289-299	4.7	51
326	Behaviour of concrete-filled stainless steel tubular X-joints subjected to compression. <i>Thin-Walled Structures</i> , 2009 , 47, 365-374	4.7	51
325	Cold-Formed Stainless Steel Sections Subjected to Web Crippling. <i>Journal of Structural Engineering</i> , 2006 , 132, 134-144	3	50
324	Cold-formed steel lipped channel columns at elevated temperatures. <i>Engineering Structures</i> , 2007 , 29, 2445-2456	4.7	49
323	Design of Aluminum Alloy Flexural Members Using Direct Strength Method. <i>Journal of Structural Engineering</i> , 2009 , 135, 558-566	3	48
322	Experimental investigation of cold-formed high strength steel tubular beams. <i>Engineering Structures</i> , 2016 , 126, 200-209	4.7	48

(2015-2018)

321	Finite element analysis and design of cold-formed steel built-up closed section columns with web stiffeners. <i>Thin-Walled Structures</i> , 2018 , 131, 223-237	4.7	47	
320	Cold-formed steel sections with web openings subjected to web crippling under two-flange loading conditions Part II: Parametric study and proposed design equations. <i>Thin-Walled Structures</i> , 2012 , 56, 79-87	4.7	47	
319	Effect of offset web holes on web crippling strength of cold-formed steel channel sections under end-two-flange loading condition. <i>Thin-Walled Structures</i> , 2013 , 65, 34-48	4.7	47	
318	Cold-Formed High-Strength Stainless Steel Tubular Sections Subjected to Web Crippling. <i>Journal of Structural Engineering</i> , 2007 , 133, 368-377	3	47	
317	Tests of pin-ended cold-formed lean duplex stainless steel columns. <i>Journal of Constructional Steel Research</i> , 2013 , 82, 203-215	3.8	45	
316	Web crippling of aluminium tubes with perforated webs. <i>Engineering Structures</i> , 2010 , 32, 1397-1410	4.7	45	
315	Structural behavior of cold-formed stainless steel bolted connections. <i>Thin-Walled Structures</i> , 2014 , 83, 147-156	4.7	44	
314	Fire resistance of concrete-filled high strength steel tubular columns. <i>Thin-Walled Structures</i> , 2013 , 71, 46-56	4.7	43	
313	Cold-Formed Steel Lipped Channel Columns Influenced by Local-Distortional Interaction: Strength and DSM Design. <i>Journal of Structural Engineering</i> , 2013 , 139, 1059-1074	3	43	
312	Column Tests of Cold-Formed Steel Channels with Complex Stiffeners. <i>Journal of Structural Engineering</i> , 2002 , 128, 737-745	3	43	
311	Design of cold-formed steel channels with stiffened webs subjected to bending. <i>Thin-Walled Structures</i> , 2014 , 85, 81-92	4.7	42	
310	Structural performance of cold-formed lean duplex stainless steel columns. <i>Thin-Walled Structures</i> , 2014 , 83, 59-69	4.7	42	
309	Buckling Analysis of Cold-Formed Steel Lipped Angle Columns. <i>Journal of Structural Engineering</i> , 2005 , 131, 1570-1579	3	42	
308	Shift of Effective Centroid of Channel Columns. <i>Journal of Structural Engineering</i> , 1999 , 125, 524-531	3	42	
307	Web crippling behaviour of cold-formed steel channel sections with web holes subjected to interior-one-flange loading condition-Part I: Experimental and numerical investigation. <i>Thin-Walled Structures</i> , 2017 , 111, 103-112	4.7	41	
306	Material properties and structural behavior of cold-formed steel elliptical hollow section stub columns. <i>Thin-Walled Structures</i> , 2019 , 134, 111-126	4.7	41	
305	Post-fire behaviour of ferritic stainless steel material. <i>Construction and Building Materials</i> , 2017 , 157, 654-667	6.7	40	
304	Cross-section classification for cold-formed and built-up high strength carbon and stainless steel tubes under compression. <i>Journal of Constructional Steel Research</i> , 2015 , 106, 289-295	3.8	40	

303	Experimental investigation of aluminum alloy circular hollow section columns. <i>Engineering Structures</i> , 2006 , 28, 207-215	4.7	40
302	Tests of X- and K-Joints in SHS Stainless Steel Tubes. <i>Journal of Structural Engineering</i> , 2001 , 127, 1173-	13/82	40
301	Experimental investigation of cold-formed steel built-up closed section columns with web stiffeners. <i>Journal of Constructional Steel Research</i> , 2018 , 147, 380-392	3.8	40
300	Beam tests of cold-formed steel built-up sections with web perforations. <i>Journal of Constructional Steel Research</i> , 2015 , 115, 18-33	3.8	39
299	Design of cold-formed steel oval hollow section columns. <i>Journal of Constructional Steel Research</i> , 2012 , 71, 26-37	3.8	38
298	Cold-formed ferritic stainless steel tubular structural members subjected to concentrated bearing loads. <i>Engineering Structures</i> , 2017 , 145, 392-405	4.7	37
297	Numerical investigation and design of aluminum alloy circular hollow section columns. <i>Thin-Walled Structures</i> , 2008 , 46, 1437-1449	4.7	37
296	Tests and Design of Aluminum Alloy Compression Members. <i>Journal of Structural Engineering</i> , 2006 , 132, 1096-1107	3	36
295	Behaviour and design of cold-formed steel built-up section beams with different screw arrangements. <i>Thin-Walled Structures</i> , 2018 , 131, 16-32	4.7	36
294	Experimental Study of Square and Rectangular CFDST Sections with Stainless Steel Outer Tubes under Axial Compression. <i>Journal of Structural Engineering</i> , 2019 , 145, 04019139	3	35
293	Localdistortional interaction in cold-formed steel rack-section columns. <i>Thin-Walled Structures</i> , 2014 , 81, 185-194	4.7	35
292	Stress concentration factors of cold-formed stainless steel tubular X-joints. <i>Journal of Constructional Steel Research</i> , 2013 , 91, 26-41	3.8	35
291	Design of cold-formed stainless steel tubular T- and X-joints. <i>Journal of Constructional Steel Research</i> , 2011 , 67, 421-436	3.8	35
290	Aluminum tubular sections subjected to web cripplingPart I:. Thin-Walled Structures, 2008, 46, 339-351	4.7	35
289	Tests of concrete-filled aluminum stub columns. <i>Thin-Walled Structures</i> , 2008 , 46, 573-583	4.7	35
288	Finite element analysis and design of fixed-ended plain channel columns. <i>Finite Elements in Analysis and Design</i> , 2002 , 38, 549-566	2.2	35
287	Experimental and Numerical Studies of Ferritic Stainless Steel Tubular Cross Sections under Combined Compression and Bending. <i>Journal of Structural Engineering</i> , 2016 , 142, 04015110	3	34
286	Performance of axially restrained concrete encased steel composite columns at elevated temperatures. <i>Engineering Structures</i> , 2011 , 33, 245-254	4.7	34

(2003-2008)

285	Experimental investigation of cold-formed stainless steel tubular T-joints. <i>Thin-Walled Structures</i> , 2008 , 46, 1129-1142	4.7	34	
284	Effect of web holes on web crippling strength of cold-formed steel channel sections under end-one-flange loading condition - Part II: Parametric study and proposed design equations. <i>Thin-Walled Structures</i> , 2016 , 107, 489-501	4.7	34	
283	Material properties and residual stresses of octagonal high strength steel hollow sections. <i>Journal of Constructional Steel Research</i> , 2018 , 148, 479-490	3.8	34	
282	Structural performance of stainless steel circular hollow sections under combined axial load and bending Part 2: Parametric studies and design. <i>Thin-Walled Structures</i> , 2016 , 101, 240-248	4.7	33	
281	Behavior of cold-formed stainless steel single shear bolted connections at elevated temperatures. <i>Thin-Walled Structures</i> , 2014 , 75, 63-75	4.7	33	
280	Tests of cold-formed duplex stainless steel SHS beamBolumns. <i>Engineering Structures</i> , 2014 , 74, 111-12	14.7	33	
279	Design of cold-formed stainless steel tubular joints at elevated temperatures. <i>Engineering Structures</i> , 2012 , 35, 188-202	4.7	33	
278	Concrete-filled aluminum circular hollow section column tests. <i>Thin-Walled Structures</i> , 2009 , 47, 1272-1	2.8 <u>.</u> 9	33	
277	Aluminum alloy tubular columnsPart II: Parametric study and design using direct strength method. <i>Thin-Walled Structures</i> , 2006 , 44, 969-985	4.7	33	
276	Design of cold-formed steel built-up sections with web perforations subjected to bending. <i>Thin-Walled Structures</i> , 2017 , 120, 458-469	4.7	32	
275	Tests and behaviour of cold-formed stainless steel tubular X-joints. <i>Thin-Walled Structures</i> , 2010 , 48, 921-934	4.7	32	
274	Design of cold-formed steel unequal angle compression members. <i>Thin-Walled Structures</i> , 2007 , 45, 330)- <u>4</u> . 3 8	32	
273	The continuous strength method for the design of high strength steel tubular sections in compression. <i>Engineering Structures</i> , 2018 , 162, 177-187	4.7	31	
272	Behavior of Cold-Formed Steel Built-Up Sections with Intermediate Stiffeners under Bending. I: Tests and Numerical Validation. <i>Journal of Structural Engineering</i> , 2016 , 142, 04015150	3	31	
271	Eccentrically loaded concrete encased steel composite columns. <i>Thin-Walled Structures</i> , 2011 , 49, 53-65	4.7	31	
270	Finite-Element Simulation and Design of Cold-Formed Steel Channels Subjected to Web Crippling. Journal of Structural Engineering, 2006 , 132, 1967-1975	3	31	
269	Aluminum alloy tubular columns P art I: Finite element modeling and test verification. <i>Thin-Walled Structures</i> , 2006 , 44, 961-968	4.7	31	
268	Compression Tests of Channels with Inclined Simple Edge Stiffeners. <i>Journal of Structural Engineering</i> , 2003 , 129, 1403-1411	3	31	

267	Behaviour and design of stainless steel SHS and RHS beam-columns. <i>Thin-Walled Structures</i> , 2016 , 106, 330-345	4.7	31
266	Cross-sectional behavior of cold-formed steel semi-oval hollow sections. <i>Engineering Structures</i> , 2018 , 177, 318-330	4.7	31
265	Behavior of cold-formed steel elliptical hollow sections subjected to bending. <i>Journal of Constructional Steel Research</i> , 2019 , 158, 317-330	3.8	30
264	Screwed connections of thin sheet steels at elevated temperatures Part I: Steady state tests. <i>Engineering Structures</i> , 2012 , 35, 234-243	4.7	30
263	Behaviour of cold-formed singly symmetric columns. <i>Thin-Walled Structures</i> , 1999 , 33, 83-102	4.7	30
262	Testing and numerical modelling of S960 ultra-high strength steel angle and channel section stub columns. <i>Engineering Structures</i> , 2020 , 204, 109902	4.7	30
261	Experimental and numerical investigation on cold-formed steel semi-oval hollow section compression members. <i>Journal of Constructional Steel Research</i> , 2018 , 151, 174-184	3.8	30
260	Residual mechanical properties of high strength steels after exposure to fire. <i>Journal of Constructional Steel Research</i> , 2018 , 148, 562-571	3.8	30
259	Design of Cold-Formed High-Strength Steel Tubular Stub Columns. <i>Journal of Structural Engineering</i> , 2018 , 144, 04018063	3	29
258	Mechanical properties and cross-sectional behavior of additively manufactured high strength steel tubular sections. <i>Thin-Walled Structures</i> , 2019 , 144, 106158	4.7	29
257	Cold-Formed-Steel Oval Hollow Sections under Axial Compression. <i>Journal of Structural Engineering</i> , 2011 , 137, 719-727	3	29
256	Experimental Investigation of Cold-Formed Steel Lipped Angle Concentrically Loaded Compression Members. <i>Journal of Structural Engineering</i> , 2005 , 131, 1390-1396	3	29
255	Corner properties of cold-formed steel sections at elevated temperatures. <i>Thin-Walled Structures</i> , 2006 , 44, 216-223	4.7	29
254	Channel Columns Undergoing Local, Distortional, and Overall Buckling. <i>Journal of Structural Engineering</i> , 2002 , 128, 728-736	3	29
253	Flexural behaviour and strengths of press-braked S960 ultra-high strength steel channel section beams. <i>Engineering Structures</i> , 2019 , 200, 109735	4.7	29
252	Web crippling behaviour of cold-formed steel channel sections with web holes subjected to interior-one-flange loading condition Part II: parametric study and proposed design equations. <i>Thin-Walled Structures</i> , 2017 , 114, 92-106	4.7	28
251	Theoretical analysis of cold-formed stainless steel tubular joints. <i>Engineering Structures</i> , 2015 , 83, 99-17	154.7	28
250	Beam-column tests of cold-formed steel elliptical hollow sections. <i>Engineering Structures</i> , 2020 , 210, 109911	4.7	28

(2015-2016)

249	Behavior of Cold-Formed Steel Built-Up Sections with Intermediate Stiffeners under Bending. II: Parametric Study and Design. <i>Journal of Structural Engineering</i> , 2016 , 142, 04015151	3	28	
248	StressEtrain relationship of cold-formed lean duplex stainless steel at elevated temperatures. Journal of Constructional Steel Research, 2014 , 92, 103-113	3.8	28	
247	Experimental Study of Ferritic Stainless Steel Tubular Beam-Column Members Subjected to Unequal End Moments. <i>Journal of Structural Engineering</i> , 2016 , 142, 04016091	3	28	
246	Structural behavior of cold-formed steel semi-oval hollow section beams. <i>Engineering Structures</i> , 2019 , 185, 400-411	4.7	27	
245	Analysis and design of cold-formed steel channels subjected to combined bending and web crippling. <i>Thin-Walled Structures</i> , 2006 , 44, 314-320	4.7	27	
244	Column design of cold-formed stainless steel slender circular hollow sections. <i>Steel and Composite Structures</i> , 2006 , 6, 285-302		27	
243	Tests of cold-formed high strength steel tubular sections undergoing web crippling. <i>Engineering Structures</i> , 2017 , 141, 571-583	4.7	26	
242	Material properties of normal and high strength aluminium alloys at elevated temperatures. <i>Thin-Walled Structures</i> , 2019 , 137, 463-471	4.7	26	
241	Experimental investigation on cold-formed steel stiffened lipped channel columns undergoing local-distortional interaction. <i>Thin-Walled Structures</i> , 2020 , 150, 106682	4.7	26	
240	Tests of Cold-Formed Steel Semi-Oval Hollow Section Members under Eccentric Axial Load. <i>Journal of Structural Engineering</i> , 2020 , 146, 04020027	3	26	
239	Design of cold-formed high strength steel tubular beams. <i>Engineering Structures</i> , 2017 , 151, 432-443	4.7	26	
238	Performance of cold-formed stainless steel tubular columns at elevated temperatures. <i>Engineering Structures</i> , 2008 , 30, 2012-2021	4.7	26	
237	Bifurcation of singly symmetric columns. <i>Thin-Walled Structures</i> , 1997 , 28, 155-177	4.7	25	
236	Effects of elevated temperatures on bolted moment-connections between cold-formed steel members. <i>Engineering Structures</i> , 2007 , 29, 2419-2427	4.7	25	
235	Experimental and numerical investigation of high strength stainless steel structures. <i>Journal of Constructional Steel Research</i> , 2008 , 64, 1225-1230	3.8	25	
234	Bearing factors of cold-formed stainless steel double shear bolted connections at elevated temperatures. <i>Thin-Walled Structures</i> , 2016 , 98, 212-229	4.7	24	
233	Effects of edge-stiffened circular holes on the web crippling strength of cold-formed steel channel sections under one-flange loading conditions. <i>Engineering Structures</i> , 2017 , 139, 96-107	4.7	24	
232	Experimental Investigation of Aluminum Alloy Stub Columns with Circular Openings. <i>Journal of Structural Engineering</i> , 2015 , 141, 04015031	3	24	

231	Web crippling behaviour of cold-formed duplex stainless steel tubular sections at elevated temperatures. <i>Engineering Structures</i> , 2013 , 57, 51-62	4.7	24
230	Tests on high-strength steel hollow sections: a review. <i>Proceedings of the Institution of Civil Engineers: Structures and Buildings</i> , 2017 , 170, 621-630	0.9	24
229	CFDST sections with square stainless steel outer tubes under axial compression: Experimental investigation, numerical modelling and design. <i>Engineering Structures</i> , 2020 , 207, 110189	4.7	24
228	Structural performance of cold-formed steel elliptical hollow section pin-ended columns. <i>Thin-Walled Structures</i> , 2019 , 136, 267-279	4.7	24
227	Structural performance of cold-formed high strength steel tubular columns. <i>Engineering Structures</i> , 2018 , 177, 473-488	4.7	24
226	Design of cold-formed high strength steel tubular sections undergoing web crippling. <i>Thin-Walled Structures</i> , 2018 , 133, 192-205	4.7	24
225	Review: Interactive behaviour, failure and DSM design of cold-formed steel members prone to distortional buckling. <i>Thin-Walled Structures</i> , 2018 , 128, 12-42	4.7	23
224	Compression capacities of cold-formed high strength steel tubular T-joints. <i>Journal of Constructional Steel Research</i> , 2019 , 162, 105650	3.8	23
223	Numerical analysis and design of concrete-filled aluminum circular hollow section columns. <i>Thin-Walled Structures</i> , 2012 , 50, 45-55	4.7	23
222	Cold-formed high strength stainless steel cross-sections in compression considering interaction effects of constituent plate elements. <i>Journal of Constructional Steel Research</i> , 2013 , 80, 32-41	3.8	23
221	Investigation of concrete encased steel composite columns at elevated temperatures. <i>Thin-Walled Structures</i> , 2010 , 48, 597-608	4.7	23
220	Experimental Investigation of Aluminum Alloy Thin-Walled Tubular Members in Combined Compression and Bending. <i>Journal of Structural Engineering</i> , 2006 , 132, 1955-1966	3	23
219	Cross-sectional capacity of octagonal tubular steel stub columns under uniaxial compression. <i>Engineering Structures</i> , 2019 , 184, 480-494	4.7	22
218	Behavior and design of cold-formed and hot-finished steel elliptical tubular stub columns. <i>Journal of Constructional Steel Research</i> , 2019 , 156, 252-265	3.8	22
217	Compressive behaviour and design of CFDST cross-sections with stainless steel outer tubes. <i>Journal of Constructional Steel Research</i> , 2020 , 170, 105942	3.8	22
216	Flexural response of aluminium alloy SHS and RHS with internal stiffeners. <i>Engineering Structures</i> , 2016 , 121, 170-180	4.7	22
215	The continuous strength method for the design of high strength steel tubular sections in bending. Journal of Constructional Steel Research, 2019 , 160, 499-509	3.8	22
214	Column tests of cold-formed steel non-symmetric lipped angle sections. <i>Journal of Constructional Steel Research</i> , 2008 , 64, 808-815	3.8	22

(2011-2008)

213	Aluminum tubular sections subjected to web cripplingPart II: Proposed design equations. <i>Thin-Walled Structures</i> , 2008 , 46, 352-361	4.7	22
212	Experimental Investigation of Cold-Formed High-Strength Stainless Steel Tubular Members Subjected to Combined Bending and Web Crippling. <i>Journal of Structural Engineering</i> , 2007 , 133, 1027-1	<i>₫</i> 34	22
211	Yield line mechanism analysis on web crippling of cold-formed stainless steel tubular sections under two-flange loading. <i>Engineering Structures</i> , 2006 , 28, 880-892	4.7	22
210	High temperature tests of cold-formed stainless steel double shear bolted connections. <i>Journal of Constructional Steel Research</i> , 2015 , 104, 49-63	3.8	21
209	Tests of cold-formed high strength steel tubular T-joints. <i>Thin-Walled Structures</i> , 2019 , 143, 106200	4.7	21
208	Tests of single shear bolted connections of thin sheet steels at elevated temperatures P art I: Steady state tests. <i>Thin-Walled Structures</i> , 2011 , 49, 1320-1333	4.7	21
207	Design of Concrete-Filled Stainless Steel Tubular Connections. <i>Advances in Structural Engineering</i> , 2010 , 13, 471-492	1.9	21
206	Design of channel columns with inclined edge stiffeners. <i>Journal of Constructional Steel Research</i> , 2004 , 60, 183-197	3.8	21
205	Beam-column design of cold-formed steel semi-oval hollow non-slender sections. <i>Thin-Walled Structures</i> , 2021 , 162, 107376	4.7	21
204	Behavior of Octagonal High-Strength Steel Tubular Stub Columns. <i>Journal of Structural Engineering</i> , 2019 , 145, 04019150	3	20
203	Design of Cold-Formed Lean Duplex Stainless Steel Members in Combined Compression and Bending. <i>Journal of Structural Engineering</i> , 2015 , 141, 04014138	3	20
202	Static strength of high strength steel CHS X-joints under axial compression. <i>Journal of Constructional Steel Research</i> , 2017 , 138, 369-379	3.8	20
201	Material Properties of Cold-Formed and Hot-Finished Elliptical Hollow Sections. <i>Advances in Structural Engineering</i> , 2015 , 18, 1101-1114	1.9	20
200	Strength, interactive failure and design of web-stiffened lipped channel columns exhibiting distortional buckling. <i>Thin-Walled Structures</i> , 2014 , 81, 195-209	4.7	20
199	Aluminum alloy circular hollow section beam-columns. <i>Thin-Walled Structures</i> , 2006 , 44, 131-140	4.7	20
198	Numerical investigation of channel columns with complex stiffenerspart I: test verification. <i>Thin-Walled Structures</i> , 2004 , 42, 883-893	4.7	20
197	Structural behaviour and design of chord plastification in high strength steel CHS X-joints. <i>Construction and Building Materials</i> , 2018 , 191, 1252-1267	6.7	20
196	FRP strengthened aluminium tubular sections subjected to web crippling. <i>Thin-Walled Structures</i> , 2011 , 49, 1392-1403	4.7	19

195	Effects of transverse welds on aluminum alloy columns. <i>Thin-Walled Structures</i> , 2007 , 45, 321-329	4.7	19
194	Web crippling of cold-formed unlipped channels with flanges restrained. <i>Thin-Walled Structures</i> , 2004 , 42, 911-930	4.7	19
193	Web crippling of cold-formed ferritic stainless steel square and rectangular hollow sections. Engineering Structures, 2018 , 176, 968-980	4.7	19
192	Structural performance of cold-formed high strength steel tubular X-Joints under brace axial compression. <i>Engineering Structures</i> , 2020 , 208, 109768	4.7	18
191	Web crippling strength of cold-formed stainless steel lipped channel-sections with web openings subjected to interior-one-flange loading condition. <i>Steel and Composite Structures</i> , 2016 , 21, 629-659		18
190	Experimental investigation on cold-formed steel lipped channel beams affected by local-distortional interaction under non-uniform bending. <i>Thin-Walled Structures</i> , 2021 , 161, 107494	4.7	18
189	Design of cold-formed stainless steel lipped channel sections with web openings subjected to web crippling under end-one-flange loading condition. <i>Advances in Structural Engineering</i> , 2017 , 20, 1024-10	04 5 9	17
188	Cold-formed high strength steel SHS and RHS beams at elevated temperatures. <i>Journal of Constructional Steel Research</i> , 2019 , 158, 475-485	3.8	17
187	Design of cold-formed stainless steel circular hollow section columns using direct strength method. Engineering Structures, 2018 , 163, 177-183	4.7	17
186	Continuous Beams of Aluminum Alloy Tubular Cross Sections. I: Tests and FE Model Validation. Journal of Structural Engineering, 2015 , 141, 04014232	3	17
185	Tests and Design of Aluminum Tubular Sections Subjected to Concentrated Bearing Load. <i>Journal of Structural Engineering</i> , 2009 , 135, 806-817	3	17
184	Numerical investigation of web crippling strength in cold-formed stainless steel lipped channels with web openings subjected to interior-two-flange loading condition. <i>Steel and Composite Structures</i> , 2017 , 23, 363-383		17
183	Ferritic stainless steel tubular members strengthened with high modulus CFRP plate subjected to web crippling. <i>Journal of Constructional Steel Research</i> , 2012 , 77, 107-118	3.8	16
182	Design formulations for non-welded and welded aluminium columns using Continuous Strength Method. <i>Engineering Structures</i> , 2011 , 33, 3197-3207	4.7	16
181	Web Crippling of Cold-Formed Stainless Steel Tubular Sections. <i>Advances in Structural Engineering</i> , 2008 , 11, 679-691	1.9	16
180	Research on cold-formed steel columns. <i>Thin-Walled Structures</i> , 2008 , 46, 731-740	4.7	16
179	Concrete-filled double-skin aluminum circular hollow section stub columns. <i>Thin-Walled Structures</i> , 2018 , 133, 141-152	4.7	16
178	Web crippling strength of cold-formed stainless-steel lipped channels with web perforations under end-two-flange loading. <i>Advances in Structural Engineering</i> , 2017 , 20, 1845-1863	1.9	15

(2019-2018)

177	Structural performance of cold-formed lean duplex stainless steel beams at elevated temperatures. <i>Thin-Walled Structures</i> , 2018 , 129, 20-27	4.7	15	
176	Experimental and numerical investigation of concrete-filled hot-finished and cold-formed steel elliptical tubular stub columns. <i>Thin-Walled Structures</i> , 2019 , 145, 106437	4.7	15	
175	Transient state tests of cold-formed stainless steel single shear bolted connections. <i>Engineering Structures</i> , 2014 , 81, 1-9	4.7	15	
174	Screwed connections of thin sheet steels at elevated temperatures Part II: Transient state tests. <i>Engineering Structures</i> , 2012 , 35, 228-233	4.7	15	
173	Cold-Formed Steel Channels Subjected to Concentrated Bearing Load. <i>Journal of Structural Engineering</i> , 2003 , 129, 1003-1010	3	15	
172	Investigation of cold-formed stainless steel non-slender circular hollow section columns. <i>Steel and Composite Structures</i> , 2007 , 7, 321-337		15	
171	Behaviour of concrete-filled cold-formed high strength steel circular stub columns. <i>Thin-Walled Structures</i> , 2020 , 157, 107078	4.7	15	
170	Static strength of stainless steel K- and N-joints at elevated temperatures. <i>Thin-Walled Structures</i> , 2018 , 122, 501-509	4.7	15	
169	Behaviour of cold-formed high strength steel RHS under localised bearing forces. <i>Engineering Structures</i> , 2019 , 183, 1049-1058	4.7	14	
168	Nonlinear analysis of composite castellated beams with profiled steel sheeting exposed to different fire conditions. <i>Journal of Constructional Steel Research</i> , 2015 , 113, 247-260	3.8	14	
167	Design of Cold-Formed Steel Channel Columns with Complex Edge Stiffeners by Direct Strength Method. <i>Journal of Structural Engineering</i> , 2004 , 130, 1756-1763	3	14	
166	Tests of Channels Subjected to Combined Bending and Web Crippling. <i>Journal of Structural Engineering</i> , 2002 , 128, 300-308	3	14	
165	Structural behaviour and design of high strength steel RHS X-joints. <i>Engineering Structures</i> , 2019 , 200, 109494	4.7	14	
164	Mechanical properties of lean duplex stainless steel at post-fire condition. <i>Thin-Walled Structures</i> , 2018 , 130, 564-576	4.7	14	
163	CFS lipped channel columns affected by L-D-G interaction. Part I: Experimental investigation. <i>Computers and Structures</i> , 2018 , 207, 219-232	4.5	13	
162	FRP strengthening of lean duplex stainless steel hollow sections subjected to web crippling. <i>Thin-Walled Structures</i> , 2014 , 85, 183-200	4.7	13	
161	Web crippling of aluminium tubular structural members strengthened by CFRP. <i>Thin-Walled Structures</i> , 2012 , 59, 58-69	4.7	13	
160	Web crippling of lean duplex stainless steel tubular sections under concentrated end bearing loads. <i>Thin-Walled Structures</i> , 2019 , 134, 29-39	4.7	13	

159	Carbon steel and stainless steel bolted connections undergoing unloading and re-loading processes. <i>Journal of Constructional Steel Research</i> , 2019 , 157, 337-346	3.8	12
158	Design of aluminium alloy stocky hollow sections subjected to concentrated transverse loads. <i>Thin-Walled Structures</i> , 2018 , 124, 546-557	4.7	12
157	Experimental Investigation of Concrete-Filled High-Strength Steel Tubular X Joints. <i>Journal of Structural Engineering</i> , 2018 , 144, 04018178	3	12
156	Bearing factors for single shear bolted connections of thin sheet steels at elevated temperatures. <i>Thin-Walled Structures</i> , 2012 , 52, 126-142	4.7	12
155	Tests of single shear bolted connections of thin sheet steels at elevated temperaturesPart II: Transient state tests. <i>Thin-Walled Structures</i> , 2011 , 49, 1334-1340	4.7	12
154	3D Visualization of Structures Using Finite-Element Analysis in Teaching. <i>Journal of Professional Issues in Engineering Education and Practice</i> , 2012 , 138, 131-138	0.7	12
153	Experimental study on the behaviour and strength of high strength steel CHS T- and X-joints. <i>Engineering Structures</i> , 2020 , 206, 110182	4.7	12
152	Behaviour of aluminium alloy plain and lipped channel columns. <i>Thin-Walled Structures</i> , 2019 , 135, 306-3	3 4 67	12
151	Experimental and Numerical Investigations of Octagonal High-Strength Steel Tubular Stub Columns under Combined Compression and Bending. <i>Journal of Structural Engineering</i> , 2021 , 147, 04020282	3	12
150	Cold-Formed High-Strength Steel Rectangular and Square Hollow Sections under Combined Compression and Bending. <i>Journal of Structural Engineering</i> , 2019 , 145, 04019154	3	11
149	Design of aluminium alloy beams at elevated temperatures. <i>Thin-Walled Structures</i> , 2019 , 140, 506-515	4.7	11
148	Finite element-based method for residual stresses and plastic strains in cold-formed steel hollow sections. <i>Engineering Structures</i> , 2019 , 188, 24-42	4.7	11
147	Effects of end distance on thin sheet steel bolted connections. Engineering Structures, 2019, 196, 10933	34 .7	11
146	Strengthening of ferritic stainless steel tubular structural members using FRP subjected to Two-Flange-Loading. <i>Thin-Walled Structures</i> , 2013 , 62, 179-190	4.7	11
145	Continuous Beams of Aluminum Alloy Tubular Cross Sections. II: Parametric Study and Design. Journal of Structural Engineering, 2015 , 141, 04014233	3	11
144	On the use of the EC3 and AISI specifications to estimate the ultimate load of CFRP-strengthened cold-formed steel lipped channel columns. <i>Thin-Walled Structures</i> , 2009 , 47, 1102-1111	4.7	11
143	Compression Tests of Cold-Formed Steel C- and Z-Sections with Different Stiffeners. <i>Journal of Structural Engineering</i> , 2019 , 145, 04019022	3	11
142	Bifurcation analysis of thin-walled plain channel compression members. <i>Finite Elements in Analysis and Design</i> , 2004 , 41, 211-225	2.2	10

(2011-2003)

141	Measurement techniques in the testing of thin-walled structural members. <i>Experimental Mechanics</i> , 2003 , 43, 32-38	2.6	10
140	Cold-formed high strength steel tubular beam-columns. <i>Engineering Structures</i> , 2021 , 230, 111618	4.7	10
139	Structural behaviour of cold-formed stainless steel bolted connections at post-fire condition. Journal of Constructional Steel Research, 2019 , 152, 312-321	3.8	10
138	Engineering modular integrated construction for high-rise building: a case study in Hong Kong. <i>Proceedings of the Institution of Civil Engineers: Civil Engineering</i> , 2019 , 172, 51-57	0.4	9
137	CFS lipped channel columns affected by L-D-G interaction. Part II: Numerical simulations and design considerations. <i>Computers and Structures</i> , 2018 , 207, 200-218	4.5	9
136	Finite element analysis of cold-formed lean duplex stainless steel columns at elevated temperatures. <i>Thin-Walled Structures</i> , 2019 , 143, 106203	4.7	9
135	Numerical Investigation of the Bilinear Softening Law in the Cohesive Crack Model for Normal-Strength and High-Strength Concrete. <i>Advances in Structural Engineering</i> , 2012 , 15, 373-387	1.9	9
134	Numerical investigation of channel columns with complex stiffenerspart II: parametric study and design. <i>Thin-Walled Structures</i> , 2004 , 42, 895-909	4.7	9
133	Experimental and numerical investigation on cold-formed steel built-up section pin-ended columns. <i>Thin-Walled Structures</i> , 2022 , 170, 108444	4.7	9
132	Mechanical properties of thin sheet steel after exposure to high temperatures. <i>Thin-Walled Structures</i> , 2019 , 142, 460-475	4.7	8
131	Experimental investigation of concrete-filled single-skin and double-skin steel oval hollow section stub columns. <i>Thin-Walled Structures</i> , 2019 , 140, 157-167	4.7	8
130	Tensile Tests of Cold-Formed Stainless Steel Tubes. <i>Journal of Structural Engineering</i> , 2020 , 146, 04020	165	8
129	Fire resistance of stainless steel single shear bolted connections. <i>Thin-Walled Structures</i> , 2018 , 130, 332	-346	8
128	LocalDistortional Interaction in Cold-formed Steel Columns: Mechanics, Testing, Numerical Simulation and Design. <i>Structures</i> , 2015 , 4, 38-57	3.4	8
127	Continuous Strength Method for Aluminium Alloy Structures. <i>Advanced Materials Research</i> , 2013 , 742, 70-75	0.5	8
126	Effects of Elevated Temperatures on Double Shear Bolted Connections of Thin Sheet Steels. Journal of Structural Engineering, 2013 , 139, 757-771	3	8
125	Strength and Behavior of Cold-Formed Steel Z -Sections Subjected to Major Axis Bending. <i>Journal of Structural Engineering</i> , 2006 , 132, 1632-1640	3	8
124	Effect of Surface Preparation on the Strength of FRP-to-Mild Steel and FRP-to-Stainless Steel Joints 2011 , 869-872		8

123	Experimental and Numerical Investigations of S690 High-Strength Steel Welded I-Sections under Combined Compression and Bending. <i>Journal of Structural Engineering</i> , 2021 , 147, 04021054	3	8
122	Material ductility and temperature effects on block shear capacity of bolted connections. <i>Journal of Constructional Steel Research</i> , 2021 , 177, 106461	3.8	8
121	Design of concrete-filled high strength steel tubular joints subjected to compression. <i>Journal of Constructional Steel Research</i> , 2018 , 150, 209-220	3.8	8
120	Classification of aluminium alloy cross-sections. <i>Engineering Structures</i> , 2017 , 141, 29-40	4.7	7
119	Cold-Formed Lean Duplex Stainless Steel Tubular Members under Concentrated Interior Bearing Loads. <i>Journal of Structural Engineering</i> , 2019 , 145, 04019056	3	7
118	Uniformly bent CFS lipped channel beams experiencing local-distortional interaction: Experimental investigation. <i>Journal of Constructional Steel Research</i> , 2020 , 170, 106098	3.8	7
117	Inelastic bifurcation of cold-formed singly symmetric columns. <i>Thin-Walled Structures</i> , 2000 , 36, 213-23	04.7	7
116	Static resistances of cold-formed high strength steel tubular non-90°LX-Joints. <i>Engineering Structures</i> , 2021 , 239, 112064	4.7	7
115	Numerical investigation and design of fully chord supported tubular T-joints. <i>Engineering Structures</i> , 2021 , 239, 112063	4.7	7
114	Structural performance of concrete-filled cold-formed high-strength steel octagonal tubular stub columns. <i>Engineering Structures</i> , 2021 , 239, 112360	4.7	7
113	Numerical analysis and design of cold-formed steel elliptical hollow sections under combined compression and bending. <i>Engineering Structures</i> , 2021 , 241, 112417	4.7	7
112	Tests of cold-formed steel built-up open section members under eccentric compressive load. Journal of Constructional Steel Research, 2021, 184, 106775	3.8	7
111	Testing and numerical modelling of circular CFDST cross-sections with stainless steel outer tubes in bending. <i>Engineering Structures</i> , 2021 , 247, 113170	4.7	7
110	Design of CFRP-strengthened stainless steel tubular sections subjected to web crippling. <i>Journal of Constructional Steel Research</i> , 2019 , 159, 442-458	3.8	6
109	Tests of cold-formed normal and high strength steel tubes under tension. <i>Thin-Walled Structures</i> , 2020 , 153, 106844	4.7	6
108	Net section tension strength of bolted connections in ultra-high strength sheet steel during and after fire. <i>Journal of Constructional Steel Research</i> , 2020 , 172, 106237	3.8	6
107	Design of austenitic and duplex stainless steel SHS and RHS beam-columns. <i>Journal of Constructional Steel Research</i> , 2019 , 152, 143-153	3.8	6
106	Behaviour and Design of Composite Beams with Stiffened and Unstiffened Web Openings. <i>Advances in Structural Engineering</i> , 2015 , 18, 893-918	1.9	6

(2020-2013)

105	Reinforcement schemes for cold-formed steel joists with a large web opening in shear zoneAn experimental investigation. <i>Thin-Walled Structures</i> , 2013 , 72, 28-36	4.7	5	
104	EXPERIMENTAL INVESTIGATION OF COLD-FORMED HIGH STRENGTH STAINLESS STEEL COMPRESSION MEMBERS 2005 ,		5	
103	Mode interaction in cold-formed steel members: state-of-art report. Steel Construction, 2020, 13, 186-2	07 .5	5	
102	High strength steel square and rectangular tubular stub columns infilled with concrete. <i>Journal of Constructional Steel Research</i> , 2021 , 179, 106536	3.8	5	
101	Design of cold-formed high strength steel tubular T-joints under compression loads. <i>Thin-Walled Structures</i> , 2021 , 164, 107573	4.7	5	
100	Finite element modelling and design of stainless steel SHS and RHS beam-columns under moment gradients. <i>Thin-Walled Structures</i> , 2019 , 134, 220-232	4.7	5	
99	Testing, finite element analysis and design of high strength steel RHS T-joints. <i>Engineering Structures</i> , 2021 , 227, 111184	4.7	5	
98	Post-fire residual material properties of cold-formed steel elliptical hollow sections. <i>Journal of Constructional Steel Research</i> , 2021 , 183, 106723	3.8	5	
97	Cold-Formed High-Strength Steel Tubular Structural Members under Combined Bending and Bearing. <i>Journal of Structural Engineering</i> , 2019 , 145, 04019081	3	4	
96	Compressive strengths of concrete-filled double-skin (circular hollow section outer and square hollow section inner) aluminium tubular sections. <i>Advances in Structural Engineering</i> , 2019 , 22, 2418-24.	3 ^{4.9}	4	
95	Numerical study and design of aluminium alloy channel section columns with welds. <i>Thin-Walled Structures</i> , 2019 , 139, 139-150	4.7	4	
94	Web crippling of aluminium alloy channel sections with flanges restrained. <i>Thin-Walled Structures</i> , 2020 , 148, 106576	4.7	4	
93	Cross-section behavior of cold-formed steel elliptical hollow sections IA numerical study. <i>Engineering Structures</i> , 2019 , 201, 109797	4.7	4	
92	Finite Element Modeling 2014 , 31-55		4	
91	Experimental investigation of concrete-filled cold-formed steel elliptical stub columns 2017, 109-115		4	
90	Compression tests of aluminium alloy cross-sections 2012 , 501-508		4	
89	Local buckling and shift of effective centroid of cold-formed steel columns. <i>Steel and Composite Structures</i> , 2005 , 5, 235-246		4	
88	Mode interaction in cold-formed steel members: state-of-art report. Steel Construction, 2020, 13, 165-1	8 5.5	4	

87	Flexural behaviour of cold-formed steel oval hollow section beams. <i>Journal of Constructional Steel Research</i> , 2021 , 180, 106605	3.8	4
86	Post-fire mechanical response of high strength steels. <i>Thin-Walled Structures</i> , 2021 , 164, 107606	4.7	4
85	Web crippling design of lean duplex stainless steel tubular members under interior loading conditions. <i>Engineering Structures</i> , 2021 , 238, 112192	4.7	4
84	Pin-ended press-braked S960 ultra-high strength steel angle section columns: Testing, numerical modelling and design. <i>Engineering Structures</i> , 2021 , 228, 111418	4.7	4
83	Structural behaviour and design of high strength steel CHS T-joints. <i>Thin-Walled Structures</i> , 2021 , 159, 107215	4.7	4
82	Experimental investigation on stress concentration factors of cold-formed high strength steel tubular X-joints. <i>Engineering Structures</i> , 2021 , 243, 112408	4.7	4
81	Aluminium alloy channels subjected to web crippling. <i>Advances in Structural Engineering</i> , 2019 , 22, 1617-5	1630	3
80	Simplified models for residual stresses and equivalent plastic strains in cold-formed steel elliptical hollow sections. <i>Thin-Walled Structures</i> , 2020 , 154, 106835	4.7	3
79	Design of Aluminum Alloy Channel Section Beams. <i>Journal of Structural Engineering</i> , 2020 , 146, 0402007	4	3
78	Design of CFRP-strengthened aluminium alloy tubular sections subjected to web crippling. Thin-Walled Structures, 2018 , 124, 605-621	4.7	3
77	Ultimate Compressive Strength of Cold-Formed Steel Angle Struts Loaded through a Single Bolt. Advances in Structural Engineering, 2012, 15, 1583-1595	1.9	3
76	Effects of end distance on thin sheet steel single shear bolted connections at elevated temperatures. <i>Thin-Walled Structures</i> , 2020 , 148, 106577	4.7	3
75	Mechanical properties of cold-formed steel semi-oval hollow sections after exposure to ISO-834 fire. <i>Thin-Walled Structures</i> , 2021 , 167, 108202	4.7	3
74	Behaviour of duplex stainless steel bolted connections. <i>Thin-Walled Structures</i> , 2021 , 169, 108380	4.7	3
73	08.19: Tests on concrete-filled double skin tubular beams with circular stainless steel outer tubes. <i>Ce/Papers</i> , 2017 , 1, 1996-2005	0.3	2
72	10.37: Mechanical properties of high strength aluminium alloy at elevated temperatures. <i>Ce/Papers</i> , 2017 , 1, 2831-2839	0.3	2
71	Assessment of Eurocode 9 slenderness limits for elements in compression 2015 , 569-574		2
70	An Experimental Study on the Mechanical Properties of Pultruded CFRP Plates at Elevated Temperatures 2011 ,		2

69	Beam-Column Tests of Cold-Formed Steel Built-Up Closed Sections. <i>Journal of Structural Engineering</i> , 2022 , 148,	3	2
68	Experimental investigation of concrete-filled lean duplex stainless steel RHS stub columns 2017 , 95-100)	2
67	Effects of different adhesive and FRP on strengthening of stainless steel tubular structural members 2010 , 273-280		2
66	A linear one-dimensional model for the flexural-torsional vibrations of tapered thin-walled bars with open cross-secti 2013 , 415-416		2
65	Finite element analysis of cold-formed steel lipped angle compression members 2005, 469-478		2
64	Design and tests of cold-formed stainless steel sections subjected to concentrated bearing load 2005 , 487-496		2
63	Design of lean duplex stainless steel tubular sections subjected to concentrated end bearing loads at elevated temperatures. <i>Thin-Walled Structures</i> , 2021 , 160, 107298	4.7	2
62	Design of Lean Duplex Stainless Steel Tubular Sections Subjected to Concentrated End-Bearing Loads. <i>Journal of Structural Engineering</i> , 2021 , 147, 04021009	3	2
61	Effects of material ductility and cooling methods on the bearing strength of steel bolted connections. <i>Journal of Constructional Steel Research</i> , 2021 , 181, 106625	3.8	2
60	Chord plastification in high strength steel circular hollow section X-joints: Testing, modelling and strength predictions. <i>Engineering Structures</i> , 2021 , 243, 112692	4.7	2
59	Stress concentration factors of cold-formed high strength steel tubular T-joints. <i>Thin-Walled Structures</i> , 2021 , 166, 107996	4.7	2
58	Behaviour of concrete-filled ferritic stainless steel tubular joints: Experimental investigation, numerical modelling and design. <i>Engineering Structures</i> , 2021 , 247, 113109	4.7	2
57	08.29: Experimental investigation of concrete-filled double skin tubular stub columns with ferritic stainless steel outer tubes. <i>Ce/Papers</i> , 2017 , 1, 2070-2079	0.3	1
56	12.18: Experimental investigation on cold-formed high strength steel circular hollow sections under combined compression and bending. <i>Ce/Papers</i> , 2017 , 1, 3622-3630	0.3	1
55	Examples of Finite Element Models of Metal Tubular Connections 2014 , 151-181		1
54	Response to Discussion on Numerical simulation of concrete encased steel composite columns[J Constr Steel Res 2011; 67(2): 211[2]. <i>Journal of Constructional Steel Research</i> , 2011 , 67, 1413	3.8	1
53	Tests of stainless steel RHS X-joints 2017 , 269-276		1
52	Tests of cold-formed steel built-up open section beam-columns 2019 , 1077-1082		1

51	High strength steel tubular X-joints⊞n experimental insight under axial compression 2017 , 223-230		1
50	Compression resistance of aluminium stub columns using Continuous Strength Method 2010 , 257-263		1
49	Eccentric compression tests on high strength duplex stainless steel columns 2012, 431-438		1
48	Design of Z-section purlins under combined axial compression and bending 2013 , 429-430		1
47	Strength predictions of circular hollow section T-joints of steel grade 1100 MPa. <i>Journal of Constructional Steel Research</i> , 2022 , 188, 107003	3.8	1
46	Structural performance of cold-formed steel built-up section beams under non-uniform bending. Journal of Constructional Steel Research, 2022, 189, 107050	3.8	1
45	Web crippling design of cold-formed steel built-up I-sections. Engineering Structures, 2022, 252, 113731	4.7	1
44	Design of ferritic stainless steel tubular sections subjected to concentrated bearing load 2017 , 513-521		1
43	Behaviour of cold-formed lean duplex stainless steel sections 2012 , 399-405		1
42	Experimental and numerical studies on stress concentration factors of high strength steel fabricated box X-joints. <i>Thin-Walled Structures</i> , 2021 , 164, 107858	4.7	1
41	Behaviour of composite frames with castellated steel beams at elevated temperatures. <i>Advances in Structural Engineering</i> , 2016 , 19, 1060-1076	1.9	1
40	Design of cold-formed stainless steel RHS and SHS beamBolumns at elevated temperatures. <i>Thin-Walled Structures</i> , 2021 , 165, 107960	4.7	1
39	Mode Interaction in Cold-Formed Steel Members: State-of-Art Report. Ce/Papers, 2021, 4, 34-64	0.3	1
38	Numerical assessment of stainless steel tubular T-joints subjected to brace and chord axial forces. <i>Ce/Papers</i> , 2021 , 4, 2495-2503	0.3	1
37	Ultimate resistances of member-rotated cold-formed high strength steel tubular T-joints under compression loads. <i>Engineering Structures</i> , 2021 , 244, 112601	4.7	1
36	Post-fire behaviour of cold-formed high strength steel tubular T- and X-joints. <i>Journal of Constructional Steel Research</i> , 2021 , 186, 106859	3.8	1
35	Experimental study on cold-formed steel built-up section beam-columns experiencing non-uniform bending. <i>Engineering Structures</i> , 2022 , 256, 113954	4.7	1
34	Design of cold-formed steel built-up open section members under combined compression and bending. <i>Thin-Walled Structures</i> , 2022 , 172, 108890	4.7	0

33	Cold-formed stainless steel RHS members undergoing combined bending and web crippling: Testing, modelling and design. <i>Engineering Structures</i> , 2022 , 250, 113466	4.7	О
32	Web crippling of cold-formed steel built-up box sections. <i>Thin-Walled Structures</i> , 2022 , 171, 108789	4.7	O
31	Effect of member orientation on static strengths of cold-formed high strength steel tubular X-joints. <i>Thin-Walled Structures</i> , 2022 , 170, 108501	4.7	O
30	Design and tests of cold-formed high strength stainless steel tubular sections subjected to web crippling 2017 , 277-283		O
29	Tests of aluminum alloy perforated built-up sections subjected to bending. <i>Thin-Walled Structures</i> , 2021 , 158, 107136	4.7	O
28	Cross-Sectional Behavior of Austenitic Stainless Steel Welded I-Sections under Major-Axis Combined Loading. <i>Journal of Structural Engineering</i> , 2021 , 147, 04021202	3	O
27	01.09: Transient state tests of cold-formed stainless steel bolted connections. <i>Ce/Papers</i> , 2017 , 1, 234	1-2423	
26	Examples of Finite Element Models of Metal Beams 2014 , 115-150		
25	Examples of Finite Element Models of Metal Columns 2014 , 72-114		
24	Linear and Nonlinear Finite Element Analyses 2014 , 56-71		
23	Design Examples of Metal Tubular Connections 2014 , 182-205		
22	Lean Duplex Stainless Steel Tubular Members Strengthened with CFRP Plate Subjected to Web Crippling. <i>Applied Mechanics and Materials</i> , 2012 , 166-169, 1644-1656	0.3	
21	Web crippling of ferritic stainless steel tubular members strengthened with high modulus CFRP plate 2012 , 415-421		
20	Behaviour of cold-formed steel built-up I-sections with perforated web under localized forces. Journal of Constructional Steel Research, 2022, 190, 107129	3.8	
19	Design of cold-formed ferritic stainless steel RHS perforated beams. <i>Engineering Structures</i> , 2022 , 250, 113372	4.7	
18	Experimental study on cold-formed steel semi-oval hollow section columns 2017 , 549-556		
17	Structural performance of concrete-filled double skin tubular beams with eccentric inner tubes 2017 , 117-123		
16	Tests of concrete-filled high strength steel tubular X-joints under compression 2017 , 137-143		

Numerical investigation on static strength of CHS X-joints using S700 and S900 steel 2017, 475-480 15 Structural behaviour of octagonal tubular steel stub columns under uniaxial compression 2017, 567-572 14 Behavior of double-shear high strength steel bolted connections at elevated temperatures 2019, 1266-1270 13 Recent developments in cold-formed steel structures 2019, 3-10 12 Behaviour of eccentrically loaded ferritic stainless steel stub columns 2015, 279-286 11 Mechanical properties of cold-formed high strength steel at elevated temperatures 2016, 1022-1027 10 Experimental study of ferritic stainless steel tubular section beam-columns subjected to moment 9 gradients **2016**, 1106-1112 Local buckling behaviour of stainless steel circular hollow sections under combined axial compressive load and bending moment 2016, 1119-1125 Web bearing design of aluminium alloy hollow sections 2016, 1093-1098 Experimental investigation of concrete-filled high strength steel square hollow section members subjected to bending **2016**, 1196-1200 Compression members of cold-formed steel oval hollow sections 2010, 341-347 5 Column tests of concrete-filled aluminium tubular sections 2010, 233-239 Investigation of concrete-filled aluminum circular hollow section columns 2012, 493-500 Numerical modeling and design of cold-formed steel oval hollow section compression members 2012, 275-281 Effects of End Distance and Temperature on Thin-Sheet Steel Double Shear-Bolted Connections. 3 Journal of Structural Engineering, 2020, 146, 04020120