List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8217140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Binary metal oxide: advanced energy storage materials in supercapacitors. Journal of Materials Chemistry A, 2015, 3, 43-59.	10.3	523
2	Inherently Eu ²⁺ /Eu ³⁺ Codoped Sc ₂ O ₃ Nanoparticles asÂHighâ€Performance Nanothermometers. Advanced Materials, 2018, 30, e1705256.	21.0	203
3	Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes. Applied Catalysis B: Environmental, 2018, 239, 665-676.	20.2	144
4	Highly Waterâ€6table Lanthanide–Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence. Advanced Materials, 2017, 29, 1701804.	21.0	106
5	An upconversion NaYF4:Yb3+,Er3+/TiO2 core–shell nanoparticle photoelectrode for improved efficiencies of dye-sensitized solar cells. Journal of Power Sources, 2013, 226, 47-53.	7.8	87
6	Highly Efficient Catalytic Hydrogen Evolution from Ammonia Borane Using the Synergistic Effect of Crystallinity and Size of Noble-Metal-Free Nanoparticles Supported by Porous Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 10759-10767.	8.0	77
7	Active sites over CuO/CeO2 and inverse CeO2/CuO catalysts for preferential CO oxidation. Journal of Power Sources, 2014, 256, 301-311.	7.8	75
8	From Graphite to Graphene Oxide and Graphene Oxide Quantum Dots. Small, 2017, 13, 1601001.	10.0	69
9	Highly efficient visible-light-driven catalytic hydrogen evolution from ammonia borane using non-precious metal nanoparticles supported by graphitic carbon nitride. Journal of Materials Chemistry A, 2017, 5, 2288-2296.	10.3	66
10	Comparative study of CeO2/CuO and CuO/CeO2 catalysts on catalytic performance for preferential CO oxidation. International Journal of Hydrogen Energy, 2013, 38, 3597-3605.	7.1	65
11	Exceptional size-dependent catalytic activity enhancement in the room-temperature hydrogen generation from formic acid over bimetallic nanoparticles supported by porous carbon. Journal of Materials Chemistry A, 2016, 4, 1887-1894.	10.3	64
12	Visible-light-driven catalytic activity enhancement of Pd in AuPd nanoparticles for hydrogen evolution from formic acid at room temperature. Applied Catalysis B: Environmental, 2017, 204, 497-504.	20.2	63
13	A stable mixed lanthanide metal–organic framework for highly sensitive thermometry. Dalton Transactions, 2019, 48, 3723-3729.	3.3	59
14	Porous nitrogen-doped carbon-immobilized bimetallic nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane. Journal of Materials Chemistry A, 2015, 3, 22807-22815.	10.3	58
15	Inverse rod-like CeO2 supported on CuO prepared by hydrothermal method for preferential oxidation of carbon monoxide. Catalysis Communications, 2012, 23, 62-66.	3.3	51
16	Catalytic performance of a three-dimensionally ordered macroporous Co/ZrO2 catalyst in Fischer–Tropsch synthesis. Journal of Molecular Catalysis A, 2012, 360, 16-25.	4.8	49
17	Controlling catalytic dehydrogenation of formic acid over low-cost transition metal-substituted AuPd nanoparticles immobilized by functionalized metal–organic frameworks at room temperature. Journal of Materials Chemistry A, 2016, 4, 16645-16652.	10.3	49
18	Morphology evolution, formation mechanism and adsorption properties of hydrochars prepared by hydrothermal carbonization of corn stalk. RSC Advances, 2016, 6, 107829-107835.	3.6	48

#	Article	IF	CITATIONS
19	Remarkably boosting catalytic H2 evolution from ammonia borane through the visible-light-driven synergistic electron effect of non-plasmonic noble-metal-free nanoparticles and photoactive metal-organic frameworks. Applied Catalysis B: Environmental, 2018, 225, 424-432.	20.2	43
20	Insights into Li ⁺ -induced morphology evolution and upconversion luminescence enhancement of KSc ₂ F ₇ :Yb/Er nanocrystals. Journal of Materials Chemistry C, 2017, 5, 3503-3508.	5.5	42
21	A Novel Nitrogen Enriched Hydrochar Adsorbents Derived from Salix Biomass for Cr (VI) Adsorption. Scientific Reports, 2018, 8, 4040.	3.3	41
22	Synthesis of monodisperse Bi ₂ O ₃ -modified CeO ₂ nanospheres with excellent photocatalytic activity under visible light. CrystEngComm, 2015, 17, 671-677.	2.6	40
23	Bimetallic molybdenum nitride Co ₃ Mo ₃ N: a new promising catalyst for CO ₂ reforming of methane. Catalysis Science and Technology, 2017, 7, 1671-1678.	4.1	39
24	Efficient catalytic hydrolytic dehydrogenation of ammonia borane over surfactant-free bimetallic nanoparticles immobilized on amine-functionalized carbon nanotubes. International Journal of Hydrogen Energy, 2015, 40, 12315-12324.	7.1	36
25	Multi-wall carbon nanotubes as support of copper–cerium composite for preferential oxidation of carbon monoxide. Journal of Power Sources, 2015, 293, 1016-1023.	7.8	35
26	CeO2 nanoparticles supported on CuO with petal-like and sphere-flower morphologies for preferential CO oxidation. International Journal of Hydrogen Energy, 2012, 37, 11640-11649.	7.1	34
27	Deactivation analyses of CeO2/CuO catalysts in the preferential oxidation of carbon monoxide. Journal of Power Sources, 2014, 261, 46-54.	7.8	34
28	Construction of bimetallic nanoparticles immobilized by porous functionalized metal-organic frameworks toward remarkably enhanced catalytic activity for the room-temperature complete conversion of hydrous hydrazine into hydrogen. International Journal of Hydrogen Energy, 2017, 42, 19096-19105.	7.1	32
29	From ScOOH to Sc ₂ O ₃ : Phase Control, Luminescent Properties, and Applications. Advanced Materials, 2016, 28, 6665-6671.	21.0	31
30	Change of Cu+ species and synergistic effect of copper and cerium during reduction-oxidation treatment for preferential CO oxidation. Applied Surface Science, 2018, 441, 754-763.	6.1	31
31	Non-Noble Metal Nanoparticles Supported by Postmodified Porous Organic Semiconductors: Highly Efficient Catalysts for Visible-Light-Driven On-Demand H ₂ Evolution from Ammonia Borane. ACS Applied Materials & Interfaces, 2017, 9, 32767-32774.	8.0	30
32	Sc ³⁺ -induced morphology, phase structure, and upconversion luminescence evolution of YF ₃ :Yb/Er nanocrystals. Journal of Materials Chemistry C, 2017, 5, 6450-6456.	5.5	26
33	Preparations and characterizations of γ-Ce2S3@SiO2 pigments from precoated CeO2 with improved thermal and acid stabilities. RSC Advances, 2014, 4, 23653.	3.6	25
34	Effects of the precursor size on the morphologies and properties of Î ³ -Ce2S3 as a pigment. Journal of Rare Earths, 2014, 32, 540-544.	4.8	25
35	Radio-frequency thermal plasma-induced novel chainmail-like core-shell MoO2 as highly stable catalyst for converting syngas to higher alcohols. Applied Catalysis B: Environmental, 2019, 249, 63-71.	20.2	24
36	Insight into the role of UV-irradiation in photothermal catalytic Fischer–Tropsch synthesis over TiO2 nanotube-supported cobalt nanoparticles. Catalysis Science and Technology, 2018, 8, 601-610.	4.1	23

#	Article	IF	CITATIONS
37	A synthesis and up-conversional photoluminescence study of hexagonal phase NaYF4:Yb,Er nanoparticles. CrystEngComm, 2013, 15, 10100.	2.6	22
38	Controlled Synthesis, Evolution Mechanisms, and Luminescent Properties of ScF _{<i>x</i>} :Ln (<i>x</i> = 2.76, 3) Nanocrystals. Chemistry of Materials, 2017, 29, 9758-9766.	6.7	22
39	Influence of the structure and morphology of CuO supports on the amount and properties of copper–cerium interfacial sites in inverse CeO2/CuO catalysts. Journal of Molecular Catalysis A, 2015, 404-405, 193-203.	4.8	21
40	Promotion of Au3+ reduction on catalytic performance over the Au/CuO CeO2 catalysts for preferential CO oxidation. International Journal of Hydrogen Energy, 2018, 43, 10322-10333.	7.1	21
41	Synthesis and characterization of iron-based catalyst on mesoporous titania for photo-thermal F-T synthesis. International Journal of Hydrogen Energy, 2015, 40, 870-877.	7.1	20
42	Fabrication and characterization of novel magnetic/luminescent multifunctional nanocomposites for controlled drug release. CrystEngComm, 2014, 16, 6645.	2.6	18
43	Influence of crystallite size and interface on the catalyticÂperformance over the CeO2/CuO catalysts. International Journal of Hydrogen Energy, 2013, 38, 14542-14549.	7.1	16
44	Improvement role of CNTs on catalytic performance in the CeO2/xCNTs-CuO catalysts. International Journal of Hydrogen Energy, 2016, 41, 21979-21989.	7.1	16
45	Copper on the inner surface of mesoporous TiO2 hollow spheres: a highly selective photocatalyst for partial oxidation of methanol to methyl formate. Catalysis Science and Technology, 2019, 9, 6240-6252.	4.1	15
46	Insight into the promotion mechanism of K and Ni in sulfide molybdenum-based catalysts for higher alcohols synthesis from syngas. Catalysis Communications, 2017, 91, 57-61.	3.3	14
47	Facile Syntheses of Cucurbit[6]uril-Anchored Polymers and Their Noncovalent Modification. Macromolecules, 2013, 46, 1274-1282.	4.8	13
48	Multishell hollow CeO2/CuO microbox catalysts for preferential CO oxidation in H2-rich stream. Catalysis Communications, 2015, 72, 105-110.	3.3	13
49	Efficient preparation of kaolinite/methanol intercalation composite by using a Soxhlet extractor. Scientific Reports, 2019, 9, 8351.	3.3	13
50	Inverse CeO2/CuO catalysts prepared by different precipitants for preferential CO oxidation in hydrogen-rich streams. Catalysis Science and Technology, 2013, 3, 3163.	4.1	12
51	Trapping the catalyst working state by amber-inspired hybrid material to reveal the cobalt nanostructure evolution in clean liquid fuel synthesis. Catalysis Science and Technology, 2013, 3, 2639.	4.1	11
52	Synthesis of Star Poly(<i>N</i> -isopropylacrylamide) with a Core of Cucurbit[6]uril via ATRP and Controlled Thermoresponsivity. Macromolecular Rapid Communications, 2015, 36, 311-318.	3.9	11
53	Facile hydrothermal procedure to synthesize sheet-on-sheet reduced graphene oxide (RGO)/CuxO CeO2 nanocomposites for preferential oxidation of carbon monoxide. International Journal of Hydrogen Energy, 2017, 42, 14133-14143.	7.1	11
54	Promotion effect of metal oxides on inverse CeO2/CuO catalysts for preferential oxidation of CO. Catalysis Communications, 2014, 45, 16-20.	3.3	10

#	Article	IF	CITATIONS
55	Barrier effect of SiO2 shell over hollow CeO2/CuO@SiO2 catalysts for broadening temperature window of total CO conversion. Journal of Rare Earths, 2020, 38, 46-51.	4.8	10
56	Understanding of photocatalytic partial oxidation of methanol to methyl formate on surface doped La(Ce) TiO2: Experiment and DFT calculation. Journal of Catalysis, 2022, 411, 31-40.	6.2	10
57	RGO/MWCNTs/Cu x O-CeO 2 ternary nanocomposites for preferential CO oxidation in hydrogen-rich streams. Applied Surface Science, 2017, 426, 50-55.	6.1	9
58	Enhanced catalytic performance and promotional effect of molybdenum sulfide cluster-derived catalysts for higher alcohols synthesis from syngas. Catalysis Today, 2018, 316, 177-184.	4.4	9
59	Resonance Raman and time-resolved resonance Raman spectra of the monomeric and dimeric complexes of ruthenium(II) with 2,3-bis(2-pyridyl)pyrazine (dpp). Journal of Raman Spectroscopy, 2003, 34, 907-916.	2.5	8
60	Inverse CeO2/CuO Catalysts Prepared by Hydrothermal Method for Preferential CO Oxidation. Catalysis Letters, 2013, 143, 1018-1024.	2.6	8
61	Remarkable enhancement of the catalytic performance of molybdenum sulfide catalysts via an in situ decomposition method for higher alcohol synthesis from syngas. RSC Advances, 2016, 6, 112356-112362.	3.6	8
62	Preparation of Organicâ€Free Twoâ€Dimensional Kaolinite Nanosheets by In Situ Interlayer Fenton Reaction. ChemistrySelect, 2019, 4, 11604-11608.	1.5	8
63	MoSe2: a promising non-noble metal catalyst for direct ethanol synthesis from syngas. Fuel, 2020, 281, 118760.	6.4	8
64	An efficient catalyst of CuPt/TiO ₂ for photocatalytic direct dehydrogenation of methanol to methyl formate at ambient temperature. Catalysis Science and Technology, 2022, 12, 773-785.	4.1	8
65	Synthesis, crystal structure and properties of a new lanthanideâ€ŧransition metal carbonyl cluster. Applied Organometallic Chemistry, 2009, 23, 86-90.	3.5	7
66	Synthesis of Cobalt–Based Catalyst Supported on TiO ₂ Nanotubes and its Fischer–Tropsch Reaction. Integrated Ferroelectrics, 2013, 147, 59-66.	0.7	7
67	Cobalt-based catalysts derived from cobalt carbonyl clusters for Fischer-Tropsch synthesis. Chinese Journal of Catalysis, 2014, 35, 342-350.	14.0	7
68	Photocatalytic partial oxidation of methanol to methyl formate under visible light irradiation on Bi-doped TiO ₂ <i>via</i> tuning band structure and surface hydroxyls. RSC Advances, 2020, 10, 31442-31452.	3.6	7
69	Ultra-small and highly-dispersed MoP particles for remarkable enhanced catalytic performance in higher alcohols synthesis. Catalysis Communications, 2020, 137, 105945.	3.3	7
70	Synthesis, crystal structure and luminescence properties of "paddle wheel―and "butterfly―shaped polynuclear complexes. Journal of Molecular Structure, 2017, 1131, 190-195.	3.6	6
71	Simultaneous morphology manipulation, upconversion luminescence enhancement and the photoelectric effect of NaGd0.78-xZrxF4:Yb3+/Er3+ nanophosphors. Journal of Luminescence, 2019, 207, 443-453.	3.1	6
72	A luminescent view of the clickable assembly of LnF3 nanoclusters. Nature Communications, 2021, 12, 2948.	12.8	6

#	Article	IF	CITATIONS
73	Hydrothermal synthesis and characterization of a zigzag neodymium-2,2′-bipyridine-3,3′-dicarboxylate-isonicotinate coordination polymer. Journal of Coordination Chemistry, 2010, 63, 1744-1751.	2.2	4
74	Effect of Precursor Concentration on CeO2/Co3O4 Catalysts for CH4/CO2 Reforming. Catalysis Letters, 2014, 144, 561-566.	2.6	4
75	Hydrothermal Synthesis and Characterization of a Polymeric Network Constructed by Tetranuclear [Yb4(μ3-OH)4]8+ Cluster and 2,2′-bipyridine-3,3′-dicarboxylate. Journal of Cluster Science, 2010, 21, 691-	-69ે9ે.	3
76	Characterization of Cobalt-Based Catalyst Supported on CeO2 Nanocubes for Fischer-Tropsch Synthesis. Integrated Ferroelectrics, 2012, 138, 32-37.	0.7	3
77	Effect of oligomericâ€modified montmorillonite on morphology and properties of polycarbonate/montmorillonite nanocomposites. Polymer Composites, 2013, 34, 722-731.	4.6	3
78	Graphene: From Graphite to Graphene Oxide and Graphene Oxide Quantum Dots (Small 18/2017). Small, 2017, 13, .	10.0	3
79	A series of supramolecular complexes constructed from discrete lanthanide dinuclear butterfly-shaped clusters: Syntheses, structures and properties. Inorganic Chemistry Communication, 2017, 86, 70-73.	3.9	3
80	MoP with rich species generated via radio frequency thermal plasma for higher alcohols synthesis from syngas. Plasma Science and Technology, 2020, 22, 105502.	1.5	3
81	Bifunctional dual-modal luminescence nanocomposites: grafting down luminescence onto core–shell, up-conversional silica nanoarchitecture. RSC Advances, 2014, 4, 33749.	3.6	2
82	Hydrogen Bond and π–π Interactions in a 3D Supramolecular Structure Containing 1D Helical Chains. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 2361-2364.	1.2	0