
## Jorge Martins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8216910/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Assessment of an Exhaust Thermoelectric Generator Incorporating Thermal Control Applied to a<br>Heavy Duty Vehicle. Energies, 2022, 15, 4787.                                               | 3.1 | 4         |
| 2  | A Comparative Study of Biofuels and Fischer–Tropsch Diesel Blends on the Engine Combustion<br>Performance for Reducing Exhaust Gaseous and Particulate Emissions. Energies, 2021, 14, 1538. | 3.1 | 7         |
| 3  | Analysis of thermoelectric generator incorporating n-magnesium silicide and p-tetrahedrite materials. Energy Conversion and Management, 2021, 236, 114003.                                  | 9.2 | 16        |
| 4  | Fischer-Tropsch Diesel and Biofuels Exergy and Energy Analysis for Low Emissions Vehicles. Applied<br>Sciences (Switzerland), 2021, 11, 5958.                                               | 2.5 | 4         |
| 5  | Experimental Assessment of the Performance and Emissions of a Spark-Ignition Engine Using Waste-Derived Biofuels as Additives. Energies, 2021, 14, 5209.                                    | 3.1 | 3         |
| 6  | Analysis and Design of a Silicide-Tetrahedrite Thermoelectric Generator Concept Suitable for<br>Large-Scale Industrial Waste Heat Recovery. Energies, 2021, 14, 5655.                       | 3.1 | 8         |
| 7  | Experimental Studies on Wood Pellets Combustion in a Fixed Bed Combustor Using Taguchi Method.<br>Fuels, 2021, 2, 376-392.                                                                  | 2.7 | 4         |
| 8  | Performance of binary and ternary blends of gasoline, pyrogasoline and ethanol in spark ignition engines. Progress in Industrial Ecology, 2021, 1, 1.                                       | 0.2 | 1         |
| 9  | Water injection as a way for pollution control. Energy Reports, 2021, 7, 543-549.                                                                                                           | 5.1 | 4         |
| 10 | Water injection in spark ignition engines—Impact on engine cycle. Energy Reports, 2021, 7, 374-379.                                                                                         | 5.1 | 2         |
| 11 | Direct water injection and combustion time in SI engines. Energy Reports, 2021, 7, 798-803.                                                                                                 | 5.1 | 2         |
| 12 | Efficiency improvement of vehicles using temperature controlled exhaust thermoelectric generators.<br>Energy Conversion and Management, 2020, 203, 112255.                                  | 9.2 | 22        |
| 13 | Tribological solutions for engine piston ring surfaces: an overview on the materials and manufacturing. Materials and Manufacturing Processes, 2020, 35, 498-520.                           | 4.7 | 31        |
| 14 | Performance and Emissions of a Spark Ignition Engine Operated with Gasoline Supplemented with Pyrogasoline and Ethanol. Energies, 2020, 13, 4671.                                           | 3.1 | 3         |
| 15 | Effects of Diethyl Ether Introduction in Emissions and Performance of a Diesel Engine Fueled with<br>Biodiesel-Ethanol Blends. Energies, 2020, 13, 3787.                                    | 3.1 | 17        |
| 16 | Alternative Fuels for Internal Combustion Engines. Energies, 2020, 13, 4086.                                                                                                                | 3.1 | 62        |
| 17 | Development and Assessment of an Over-Expanded Engine to be Used as an Efficiency-Oriented Range<br>Extender for Electric Vehicles. Energies, 2020, 13, 430.                                | 3.1 | 4         |
| 18 | Compact automotive thermoelectric generator with embedded heat pipes for thermal control. Energy, 2020, 197, 117154.                                                                        | 8.8 | 48        |

JORGE MARTINS

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The effect of ambient pressure on the heat transfer of a water spray. Applied Thermal Engineering, 2019, 152, 490-498.                                                                 | 6.0 | 10        |
| 20 | Assessment of the use of vanadium redox flow batteries for energy storage and fast charging of electric vehicles in gas stations. Energy, 2016, 115, 1478-1494.                        | 8.8 | 42        |
| 21 | Analysis of the Effect of Module Thickness Reduction on Thermoelectric Generator Output. Journal of Electronic Materials, 2016, 45, 1711-1729.                                         | 2.2 | 24        |
| 22 | Analysis of a Temperature-Controlled Exhaust Thermoelectric Generator During a Driving Cycle.<br>Journal of Electronic Materials, 2016, 45, 1846-1870.                                 | 2.2 | 15        |
| 23 | Thermoelectric Exhaust Heat Recovery with Heat Pipe-Based Thermal Control. Journal of Electronic<br>Materials, 2015, 44, 1984-1997.                                                    | 2.2 | 32        |
| 24 | Vanadium redox flow batteries: a technology review. International Journal of Energy Research, 2015, 39, 889-918.                                                                       | 4.5 | 249       |
| 25 | Hypo-Cycloidal Crank Mechanism to Produce an Over-Expanded Cycle Engine. Mechanisms and Machine<br>Science, 2015, , 221-229.                                                           | 0.5 | 1         |
| 26 | Performance and emissions analysis of additional ethanol injection on a diesel engine powered with A blend of diesel-biodiesel. Energy for Sustainable Development, 2013, 17, 649-657. | 4.5 | 38        |
| 27 | Analysis of four-stroke, Wankel, and microturbine based range extenders for electric vehicles. Energy<br>Conversion and Management, 2012, 58, 120-133.                                 | 9.2 | 121       |
| 28 | Modelling of thermoelectric generator with heat pipe assist for range extender application. , 2011, , .                                                                                |     | 4         |
| 29 | Heat-Pipe Assisted Thermoelectric Generators for Exhaust Gas Applications. , 2010, , .                                                                                                 |     | 16        |
| 30 | A Survey on Electric/Hybrid Vehicles. , 2010, , .                                                                                                                                      |     | 13        |
| 31 | Analysis of the energetic/environmental performances of gas turbine plant: Effect of thermal barrier coatings and mass of cooling air. Thermal Science, 2009, 13, 147-164.             | 1.1 | 1         |
| 32 | Otto and VCR Miller Engine Performance during the European Driving Cycle. , 2006, , .                                                                                                  |     | 6         |
| 33 | Characterization of thermal barrier coatings with a gradient in porosity. Surface and Coatings Technology, 2005, 195, 245-251.                                                         | 4.8 | 103       |
| 34 | FRICTORQ, a Novel Fabric Surface Tester: a Progress Report. Journal of Textile Engineering, 2005, 51,<br>40-46.                                                                        | 0.2 | 6         |
| 35 | Surface analysis of nanocomposite ceramic coatings. Surface and Interface Analysis, 2003, 35, 723-728.                                                                                 | 1.8 | 10        |
| 36 | The Development of Gas (CNG, LPG and H2) Engines for Buses and Trucks and their Emission and Cycle<br>Variability Characteristics. , 0, , .                                            |     | 19        |

JORGE MARTINS

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Direct Comparison of an Engine Working under Otto, Miller and Diesel Cycles: Thermodynamic<br>Analysis and Real Engine Performance. , 0, , .                                |     | 27        |
| 38 | Thermoelectric Exhaust Energy Recovery with Temperature Control through Heat Pipes. , 0, , .                                                                                |     | 23        |
| 39 | Temperature Controlled Exhaust Heat Thermoelectric Generation. SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 0, 5, 561-571.              | 0.3 | 14        |
| 40 | Influence of Heat Pipe Operating Temperature on Exhaust Heat Thermoelectric Generation. SAE<br>International Journal of Passenger Cars - Mechanical Systems, 0, 6, 652-664. | 0.4 | 18        |
| 41 | The Use of Biodiesel on the Performance and Emission Characteristics of Diesel Engined Vehicles. , 0, , .                                                                   |     | 2         |
| 42 | Accident Reconstruction Using Data Retrieval from Crash-Test Video Images. , 0, , .                                                                                         |     | 1         |
| 43 | A New Rotary Valve for 2-Stroke Engines Enabling Over-Expansion. , 0, , .                                                                                                   |     | 3         |
| 44 | Measurement and Prediction of Heat Transfer Losses on the XMv3 Rotary Engine. SAE International<br>Journal of Engines, 0, 9, 2368-2380.                                     | 0.4 | 13        |