Bill Clyne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8216601/publications.pdf

Version: 2024-02-01

186	10,494	55	96
papers	citations	h-index	g-index
186	186	186	7135 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Indentation Plastometry of Welds. Advanced Engineering Materials, 2022, 24, .	1.6	14
2	Indentation Plastometry of Very Hard Metals. Advanced Engineering Materials, 2022, 24, .	1.6	15
3	Tensile-compressive asymmetry in extruded AZ31B rod and its effect on Profilometry-based Indentation Plastometry (PIP). Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2022, 848, 143429.	2.6	6
4	Path to single-crystalline repair and manufacture of Ni-based superalloy using directional annealing. Surface and Coatings Technology, 2021, 405, 126494.	2.2	4
5	The Effect of Residual Stresses on Stress–Strain Curves Obtained via Profilometryâ€Based Inverse Finite Element Method Indentation Plastometry. Advanced Engineering Materials, 2021, 23, 2001478.	1.6	18
6	A Critical Appraisal of the Instrumented Indentation Technique and Profilometryâ€Based Inverse Finite Element Method Indentation Plastometry for Obtaining Stress–Strain Curves. Advanced Engineering Materials, 2021, 23, 2001496.	1.6	23
7	Profilometry-based indentation plastometry to obtain stress-strain curves from anisotropic superalloy components made by additive manufacturing. Materialia, 2021, 15, 101017.	1.3	24
8	Optimization of the microstructure of TiO2 photocatalytic surfaces created by Plasma Electrolytic Oxidation of titanium substrates. Surface and Coatings Technology, 2021, 411, 127000.	2.2	22
9	Profilometryâ€Based Inverse Finite Element Method Indentation Plastometry. Advanced Engineering Materials, 2021, 23, 2100437.	1.6	33
10	Highly porous hybrid particle-fibre ceramic composite materials for use as diesel particulate filters. Journal of the European Ceramic Society, 2020, 40, 542-551.	2.8	12
11	The Permeability of Novel Hybrid Fiber Composite Material for Use as Diesel Particulate Filters. Advanced Engineering Materials, 2020, 22, 2000562.	1.6	1
12	Effects of temperature and filler content on the creep behaviour of a polyurethane rubber. Mechanics of Materials, 2020, 148, 103461.	1.7	7
13	Evaluation of the fracture energy of magnesium via ballistic impact experiments. Materialia, 2020, 10, 100652.	1.3	2
14	The incorporation of particles suspended in the electrolyte into plasma electrolytic oxidation coatings on Ti and Al substrates. Surface and Coatings Technology, 2020, 385, 125354.	2.2	43
15	A methodology for obtaining primary and secondary creep characteristics from indentation experiments, using a recess. International Journal of Mechanical Sciences, 2020, 176, 105577.	3.6	10
16	A Methodology for Obtaining Primary and Secondary Creep Characteristics from Indentation Experiments, Using a Recess. SSRN Electronic Journal, 2019, , .	0.4	0
17	Extraction of superelasticity parameter values from instrumented indentation via iterative FEM modelling. Mechanics of Materials, 2019, 134, 143-152.	1.7	9
18	Comparison between stress-strain plots obtained from indentation plastometry, based on residual indent profiles, and from uniaxial testing. Acta Materialia, 2019, 168, 87-99.	3.8	66

#	Article	IF	Citations
19	Nano-impact indentation for high strain rate testing: The influence of rebound impacts. Extreme Mechanics Letters, 2019, 26, 35-39.	2.0	31
20	A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. International Materials Reviews, 2019, 64, 127-162.	9.4	341
21	Development and assessment of photo-catalytic membranes for water purification using solar radiation. Applied Surface Science, 2018, 433, 101-107.	3.1	25
22	Johnson-Cook parameter evaluation from ballistic impact data via iterative FEM modelling. International Journal of Impact Engineering, 2018, 112, 180-192.	2.4	55
23	Mechanical properties of sprayed overlayers on superalloy substrates, obtained via indentation testing. Acta Materialia, 2018, 154, 237-245.	3 . 8	25
24	Experimental and computational issues for automated extraction of plasticity parameters from spherical indentation. Mechanics of Materials, 2018, 124, 118-131.	1.7	59
25	Cathodic discharges during high frequency plasma electrolytic oxidation. Surface and Coatings Technology, 2018, 352, 591-599.	2.2	20
26	Extraction of plasticity parameters from a single test using a spherical indenter and FEM modelling. Mechanics of Materials, 2017, 105, 112-122.	1.7	65
27	Control over fine scale terrace structures induced on polycrystalline Pd by simple heat treatments in air. Surface and Coatings Technology, 2017, 326, 327-335.	2.2	5
28	Hybrid Filtration Membranes incorporating Nanoporous Silica within a Nanoscale Alumina Fibre Scaffold. Advanced Engineering Materials, 2016, 18, 96-104.	1.6	11
29	Effect of individual discharge cascades on the microstructure of plasma electrolytic oxidation coatings. Applied Surface Science, 2016, 389, 260-269.	3.1	88
30	Adhesion of Volcanic Ash Particles under Controlled Conditions and Implications for Their Deposition in Gas Turbines. Advanced Engineering Materials, 2016, 18, 803-813.	1.6	33
31	An accelerated buoyancy adhesion assay combined with 3-D morphometric analysis for assessing osteoblast adhesion on microgrooved substrata. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 22-37.	1.5	5
32	A methodology for obtaining plasticity characteristics of metallic coatings via instrumented indentation. International Journal of Solids and Structures, 2016, 80, 128-136.	1.3	12
33	Cell structure, stiffness and permeability of freeze-dried collagen scaffolds in dry and hydrated states. Acta Biomaterialia, 2016, 33, 166-175.	4.1	59
34	Influence of the composition and viscosity of volcanic ashes on their adhesion within gas turbine aeroengines. Acta Materialia, 2016, 109, 8-16.	3.8	34
35	High speed video evidence for localised discharge cascades during plasma electrolytic oxidation. Surface and Coatings Technology, 2015, 269, 125-130.	2.2	83
36	Synchronised electrical monitoring and high speed video of bubble growth associated with individual discharges during plasma electrolytic oxidation. Applied Surface Science, 2015, 359, 405-411.	3.1	72

#	Article	IF	CITATIONS
37	Evaluation of residual stress levels in plasma electrolytic oxidation coatings using a curvature method. Surface and Coatings Technology, 2015, 269, 47-53.	2.2	40
38	Effect of inter-layer toughness in ballistic protection systems on absorption of projectile energy. International Journal of Impact Engineering, 2015, 76, 75-82.	2.4	18
39	A critical assessment of the "stable indenter velocity―method for obtaining the creep stress exponent from indentation data. Acta Materialia, 2014, 80, 56-66.	3.8	40
40	Smart materials. Materials Science and Technology, 2014, 30, 1515-1516.	0.8	1
41	Toughness of metal fibre/ceramic matrix composites (MFCs) after severe heat treatments. Materials Science and Technology, 2014, 30, 1135-1141.	0.8	3
42	The effect of vermiculite on the degradation and spallation of plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 2013, 216, 172-177.	2.2	13
43	Electrical monitoring of crack propagation during quasi-static loading and ballistic impact of alumina plates. Journal of the European Ceramic Society, 2013, 33, 2663-2675.	2.8	8
44	Time dependent statistics of plasma discharge parameters during bulk AC plasma electrolytic oxidation of aluminium. Applied Surface Science, 2013, 268, 397-409.	3.1	63
45	A procedure for extracting primary and secondary creep parameters from nanoindentation data. Mechanics of Materials, 2013, 65, 124-134.	1.7	50
46	A methodology, based on sintering-induced stiffening, for prediction of the spallation lifetime of plasma-sprayed coatings. Acta Materialia, 2013, 61, 579-588.	3.8	81
47	Filtration Performance of Membranes Produced Using Nanoscale Alumina Fibers (NAF). Advanced Engineering Materials, 2012, 14, 1088-1096.	1.6	17
48	Nanoindentation of palladium–hydrogen. International Journal of Hydrogen Energy, 2012, 37, 14315-14322.	3.8	8
49	The production of anatase-rich photoactive coatings by plasma electrolytic oxidation. Surface and Coatings Technology, 2012, 207, 66-71.	2.2	39
50	Self-similar scaling of discharge events through PEO coatings on aluminium. Surface and Coatings Technology, 2011, 206, 1051-1061.	2.2	47
51	Cell adhesion to plasma electrolytic oxidation (PEO) titania coatings, assessed using a centrifuging technique. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 2103-2112.	1.5	34
52	The fracture energy of metal fibre reinforced ceramic composites (MFCs). Composites Science and Technology, 2011, 71, 266-275.	3.8	35
53	Plasma electrolytic oxidation of aluminium networks to form a metal-cored ceramic composite hybrid material. Composites Science and Technology, 2011, 71, 908-915.	3.8	17
54	Energy absorption during projectile perforation of lightweight sandwich panels with metallic fibre cores. Composite Structures, 2011, 93, 1089-1095.	3.1	49

#	Article	IF	Citations
55	Use of nanoindentation to measure residual stresses in surface layers. Acta Materialia, 2011, 59, 2749-2761.	3.8	53
56	Nanoindentation of a Pseudoelastic NiTiFe Shape Memory Alloy. Advanced Engineering Materials, 2010, 12, 13-19.	1.6	34
57	Use of quasi-static nanoindentation data to obtain stress–strain characteristics for metallic materials. Acta Materialia, 2010, 58, 3613-3623.	3.8	60
58	AFM observation of diamond indenters after oxidation at elevated temperatures. Diamond and Related Materials, 2010, 19, 1348-1353.	1.8	43
59	Heat Transfer Through Plasma-Sprayed Thermal Barrier Coatings in Gas Turbines: A Review of Recent Work. Journal of Thermal Spray Technology, 2009, 18, 809-821.	1.6	143
60	Energy absorption during projectile perforation of thin steel plates and the kinetic energy of ejected fragments. International Journal of Impact Engineering, 2009, 36, 1250-1258.	2.4	85
61	Sintering characteristics of plasma sprayed zirconia coatings containing different stabilisers. Surface and Coatings Technology, 2009, 203, 1069-1074.	2.2	100
62	Characterisation of discharge events during plasma electrolytic oxidation. Surface and Coatings Technology, 2009, 203, 3410-3419.	2.2	304
63	A sintering model for plasma-sprayed zirconia TBCs. Part I: Free-standing coatings. Acta Materialia, 2009, 57, 980-992.	3.8	185
64	A sintering model for plasma-sprayed zirconia thermal barrier coatings. Part II: Coatings bonded to a rigid substrate. Acta Materialia, 2009, 57, 993-1003.	3.8	85
65	Ferrous Fibre Network Materials for Jet Noise Reduction in Aeroengines Part I: Acoustic Effects. Advanced Engineering Materials, 2008, 10, 192-200.	1.6	27
66	Ferrous Fibre Network Materials for Jet Noise Reduction in Aeroengines Part II: Thermoâ€Mechanical Stability. Advanced Engineering Materials, 2008, 10, 201-209.	1.6	20
67	Optimisation of Metallic Fibre Network Materials for Compact Heat Exchangers. Advanced Engineering Materials, 2008, 10, 210-218.	1.6	16
68	Modelling of gas permeation through ceramic coatings produced by thermal spraying. Acta Materialia, 2008, 56, 874-883.	3.8	15
69	Nanoindentation of binary and ternary Ni–Ti-based shape memory alloy thin films. Surface and Coatings Technology, 2008, 202, 3115-3120.	2.2	41
70	Mullite-rich plasma electrolytic oxide coatings for thermal barrier applications. Surface and Coatings Technology, 2007, 201, 8683-8687.	2.2	131
71	Modelling of transient liquid phase bonding in binary systems—A new parametric study. Materials Science & Science & Properties, Microstructure and Processing, 2007, 445-446, 493-500.	2.6	28
72	Materials use by design. Materials Today, 2007, 10, 53.	8.3	O

#	Article	IF	Citations
73	Properties and Performance of High-Purity Thermal Barrier Coatings. Journal of Thermal Spray Technology, 2007, 16, 804-808.	1.6	46
74	Sintering Kinetics of Plasma-Sprayed Zirconia TBCs. Journal of Thermal Spray Technology, 2007, 16, 809-815.	1.6	23
75	Effects of Impurity Content on the Sintering Characteristics of Plasma-Sprayed Zirconia. Journal of Thermal Spray Technology, 2007, 16, 798-803.	1.6	51
76	Modeling of Material Redistribution during Melt Route Processing of Metallic Foams., 2006,, 51-56.		0
77	Porosity in plasma electrolytic oxide coatings. Acta Materialia, 2006, 54, 1985-1993.	3.8	351
78	A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Materialia, 2006, 54, 5489-5499.	3.8	211
79	Measurement and modelling of the nanoindentation response of shape memory alloys. Acta Materialia, 2006, 54, 5607-5615.	3.8	107
80	Fibre swelling during laser drilling of carbon fibre composites. Optics and Lasers in Engineering, 2006, 44, 1185-1197.	2.0	63
81	A steady-state Bi-substrate technique for measurement of the thermal conductivity of ceramic coatings. Surface and Coatings Technology, 2006, 201, 1414-1420.	2.2	38
82	Analysis of Tomography Images of Bonded Fibre Networks to Measure Distributions of Fibre Segment Length and Fibre Orientation. Advanced Engineering Materials, 2006, 8, 495-500.	1.6	57
83	Residual Stress Generation during Laser Cladding of Steel with a Particulate Metal Matrix Composite. Advanced Engineering Materials, 2006, 8, 619-624.	1.6	57
84	Porous materials for thermal management under extreme conditions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 125-146.	1.6	110
85	Magneto-mechanical Stimulation of Bone Growth. , 2006, , 1-6.		O
86	Thermo-physical properties of plasma electrolytic oxide coatings on aluminium. Surface and Coatings Technology, 2005, 199, 168-176.	2.2	287
87	The thermal conductivity of plasma electrolytic oxide coatings on aluminium and magnesium. Surface and Coatings Technology, 2005, 199, 177-183.	2.2	159
88	Magneto-mechanical actuation of bonded ferromagnetic fibre arrays. Acta Materialia, 2005, 53, 877-889.	3.8	49
89	Mechanical and magnetic properties of metal fibre networks, with and without a polymeric matrix. Composites Science and Technology, 2005, 65, 2492-2499.	3.8	69
90	An Analytical Model for Simulation of Heat Flow in Plasma-Sprayed Thermal Barrier Coatings. Journal of Thermal Spray Technology, 2005, 14, 205-214.	1.6	78

#	Article	IF	Citations
91	The Effect of a High Thermal Gradient on Sintering and Stiffening in the Top Coat of a Thermal Barrier Coating System. Journal of Thermal Spray Technology, 2004, 13, 370-376.	1.6	59
92	Laser drilling of cooling holes through plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 2004, 176, 296-306.	2.2	73
93	Oxygen transport by gas permeation through the zirconia layer in plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 2004, 184, 311-321.	2.2	135
94	Raman spectroscopy determination of phases within thermal sprayed hydroxyapatite splats and subsequent in vitro dissolution examination. Acta Materialia, 2004, 52, 445-453.	3.8	72
95	Drainage in standing liquid metal foams: modelling and experimental observations. Acta Materialia, 2004, 52, 3047-3058.	3.8	95
96	Characterisation of carbon nano-onions using Raman spectroscopy. Chemical Physics Letters, 2003, 373, 52-56.	1.2	252
97	Production of a highly porous material by liquid phase sintering of short ferritic stainless steel fibres and a preliminary study of its mechanical behaviour. Composites Science and Technology, 2003, 63, 2345-2351.	3.8	43
98	Melt ejection during laser drilling of metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 356, 414-424.	2.6	81
99	Mechanics of thin ultra-light stainless steel sandwich sheet material. Acta Materialia, 2003, 51, 1341-1350.	3.8	55
100	Mechanics of thin ultra-light stainless steel sandwich sheet material. Acta Materialia, 2003, 51, 1351-1357.	3.8	30
101	The Effect of Prior Deformation on the Foaming Behavior of "FORMGRIP―Precursor Material. Advanced Engineering Materials, 2002, 4, 749-752.	1.6	9
102	Energy absorption during failure of layered metal foam/ceramic laminates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 323, 260-269.	2.6	12
103	Measurement of melt ejection velocities during laser drilling of steel, using a novel droplet stream interception technique. Acta Materialia, 2002, 50, 4219-4230.	3.8	13
104	Characterisation of a glass-fibre reinforced vinylester to steel joint for use between a naval GRP superstructure and a steel hull. Composite Structures, 2002, 57, 59-66.	3.1	33
105	A multiple field image analysis procedure for characterisation of fibre alignment in composites. Composites Part A: Applied Science and Manufacturing, 2001, 32, 221-229.	3.8	63
106	Surface roughness of diamond-like carbon films prepared using various techniques. Surface and Coatings Technology, 2001, 138, 23-32.	2,2	240
107	The effect of heat treatment on the stiffness of zirconia top coats in plasma-sprayed TBCs. Acta Materialia, 2001, 49, 1565-1575.	3.8	335
108	The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams. Acta Materialia, 2001, 49, 1677-1686.	3.8	224

#	Article	IF	Citations
109	Quantification of Melt Ejection Phenomena During Laser Drilling. Materials Research Society Symposia Proceedings, 2000, 617, 561.	0.1	15
110	The compressive strength of highly-aligned carbon-fibre/epoxy composites produced by pultrusion. Composites Science and Technology, 2000, 60, 525-533.	3.8	30
111	Tribological characterization of diamond-like carbon films on nonledeburitic high-speed steels. Materials Characterization, 2000, 45, 233-239.	1.9	7
112	Characterisation of impact response of metallic foam/ceramic laminates. Materials Science and Technology, 2000, 16, 785-791.	0.8	25
113	The axial compressive failure of titanium reinforced with silicon carbide monofilaments. Acta Materialia, 1999, 47, 671-687.	3.8	22
114	Mechanical properties of long-fibre thermoplastic composites with laser drilled microperforations. Composites Science and Technology, 1999, 59, 1169-1180.	3.8	21
115	Mechanical properties of long-fibre thermoplastic composites with laser drilled microperforations. Composites Science and Technology, 1999, 59, 1181-1187.	3.8	12
116	Composite Materialsâ€"Reflections on the First Half Century. Physics Today, 1999, 52, 37-41.	0.3	16
117	Measurement of interfacial fracture energy by single fibre push-out testing and its application to the titanium–silicon carbide system. Acta Materialia, 1998, 46, 3175-3189.	3.8	38
118	Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1: Mechanical properties and residual stress levels. Biomaterials, 1998, 19, 2015-2029.	5.7	482
119	Plasma sprayed hydroxyapatite coatings on titanium substrates Part 2: optimisation of coating properties. Biomaterials, 1998, 19, 2031-2043.	5.7	182
120	Mechanical stability of DLC films on metallic substrates: Part lâ€"Film structure and residual stress levels. Thin Solid Films, 1998, 312, 207-218.	0.8	81
121	Mechanical stability of DLC films on metallic substrates Part II — Interfacial toughness, debonding and blistering. Thin Solid Films, 1998, 312, 219-227.	0.8	49
122	The effect of processing route and reinforcement geometry on isothermal creep behaviour of particulate and short fibre MMCs. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 242, 57-69.	2.6	25
123	Application of a three-dimensional heat flow model to treat laser drilling of carbon fibre composites. Acta Materialia, 1998, 46, 4273-4285.	3.8	93
124	Residual stress and debonding of DLC films on metallic substrates. Diamond and Related Materials, 1998, 7, 944-950.	1.8	49
125	Heat Flow Modelling of the Laser Drilling Process as Applied to Unidirectional Carbon Fibre Composites. Materials Research Society Symposia Proceedings, 1998, 526, 155.	0.1	2
126	The Effect of Bond Coat Creep on Residual Stresses and Debonding in Plasma Sprayed Thermal Barrier Systems. , 1998, , .		3

#	Article	IF	CITATIONS
127	Oxygen Transport Through the Zirconia Top Coat in Thermal Barrier Coating Systems. , 1998, , .		2
128	Stiffness, residual stresses and interfacial fracture energy of diamond films on titanium. Diamond and Related Materials, 1997, 6, 1612-1621.	1.8	25
129	An analytical model for predicting residual stresses in progressively deposited coatings Part 1: Planar geometry. Thin Solid Films, 1997, 306, 23-33.	0.8	367
130	An analytical model for predicting residual stresses in progressively deposited coatings Part 3: Further development and applications. Thin Solid Films, 1997, 306, 52-61.	0.8	35
131	Formation and adhesion of hot filament CVD diamond films on titanium substrates. Thin Solid Films, 1997, 293, 261-269.	0.8	59
132	An analytical model for predicting residual stresses in progressively deposited coatings Part 2: Cylindrical geometry. Thin Solid Films, 1997, 306, 34-51.	0.8	62
133	The Gas Permeability of Plasma Sprayed Ceramic Coatings. , 1997, , .		4
134	Residual Stresses in Surface Coatings and Their Effects on Interfacial Debonding. Key Engineering Materials, 1996, 116-117, 307-330.	0.4	74
135	Residual stresses and debonding of diamond films on titanium alloy substrates. Diamond and Related Materials, 1996, 5, 674-681.	1.8	36
136	The effect of biological fluids on the response of DLC films to a novel erosion durability test. Diamond and Related Materials, 1996, 5, 410-414.	1.8	4
137	Cracking patterns in metal-ceramic laminates: Effects of plasticity. Journal of the Mechanics and Physics of Solids, 1996, 44, 801-821.	2.3	40
138	The Contribution of Bridging Ligament Rupture to Energy Absorption during Fracture of Metal-Ceramic Laminates. Key Engineering Materials, 1996, 127-131, 1127-1136.	0.4	9
139	Critical stress criteria for interfacial cavitation in MMCs. Acta Metallurgica Et Materialia, 1995, 43, 2107-2114.	1.9	37
140	The influence of process parameters on consolidation efficiency when forming composites by spraying onto monofilaments. Acta Metallurgica Et Materialia, 1995, 43, 2541-2550.	1.9	9
141	The effect of biological fluids on the adhesion of diamond-like carbon films to metallic substrates. Diamond and Related Materials, 1995, 4, 852-856.	1.8	32
142	Interfacial control and macroscopic failure in long-fibre-reinforced and laminated inorganic composites. Composites Science and Technology, 1994, 51, 271-282.	3.8	10
143	Simulation of the effect of creep on stress fields during vacuum plasma spraying onto titanium substrates. Surface and Coatings Technology, 1994, 64, 61-68.	2.2	8
144	Investigation of residual stress generation during thermal spraying by continuous curvature measurement. Thin Solid Films, 1994, 250, 172-180.	0.8	65

#	Article	IF	CITATIONS
145	The failure of layered ceramics in bending and tension. Composites, 1994, 25, 524-533.	0.9	27
146	The effect of the interface on the thermal conductivity of titanium-based composites. Composites, 1994, 25, 583-592.	0.9	14
147	Development of the tensioned push-out test for study of fibre/matrix interfaces. Composites, 1994, 25, 637-644.	0.9	17
148	The effect of residual stresses on the debonding of coatings—l. A model for delamination at a bimaterial interface. Acta Metallurgica Et Materialia, 1994, 42, 2823-2836.	1.9	78
149	Characterization of the strength and adhesion of diamond films on metallic substrates using a substrate plastic straining technique. Diamond and Related Materials, 1994, 3, 791-798.	1.8	15
150	The tensioned push-out test for fibre-matrix interface characterisation under mixed mode loading. Materials Science & Depth Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 160, 1-5.	2.6	21
151	The correlation of interfacial and macroscopic toughness in SiC laminates. Composites, 1993, 24, 166-176.	0.9	24
152	Surface preparation of titanium for vacuum plasma spraying and its effect on substrate/coating interfacial fracture toughness. Composites, 1993, 24, 603-610.	0.9	4
153	Reaction-induced changes in interfacial and macroscopic mechanical properties of SiC monofilament-reinforced titanium. Composites, 1993, 24, 222-228.	0.9	16
154	Effects of reinforcement content and shape on cavitation and failure in metal-matrix composites. Composites, 1993, 24, 256-261.	0.9	63
155	Fracture behaviour of ceramic laminates in bending—I. Modelling of crack propagation. Acta Metallurgica Et Materialia, 1993, 41, 805-817.	1.9	99
156	Fracture behaviour of ceramic laminates in bending—II. Comparison of model predictions with experimental data. Acta Metallurgica Et Materialia, 1993, 41, 819-827.	1.9	74
157	Possible technique for the characterization of diamond films using an ultrasonic resonance technique. Diamond and Related Materials, 1993, 2, 977-983.	1.8	2
158	The use of single fibre pushout testing to explore interfacial mechanics in SiC monofilament-reinforced Ti—II. Application of the test to composite material. Acta Metallurgica Et Materialia, 1992, 40, 141-148.	1.9	54
159	Metal matrix composites: Processing and interfaces. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 154, 111-112.	2.6	2
160	Sputter deposited barrier coatings on SiC monofilaments for use in reactive metallic matricesâ€"I. Optimisation of barrier structure. Acta Metallurgica Et Materialia, 1991, 39, 427-435.	1.9	48
161	Sputter deposited barrier coatings on SiC monofilaments for use in reactive metallic matrices—II. System stress state. Acta Metallurgica Et Materialia, 1991, 39, 437-443.	1.9	5
162	Sputter deposited barrier coatings on SiC monofilaments for use in reactive metallic matrices—III. Microstructural stability in composites based on magnesium and titanium. Acta Metallurgica Et Materialia, 1991, 39, 445-452.	1.9	23

#	Article	IF	CITATIONS
163	The quenching stress in thermally sprayed coatings. Thin Solid Films, 1991, 200, 49-66.	0.8	452
164	Use of the frozen-stress photoelastic method to explore load partitioning in short-fibre composites. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 1991, 135, 173-178.	2.6	8
165	Recrystallization in fibrous and particulate metal matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 135, 281-285.	2.6	51
166	The application of scanning laser extensometry to explore thermal cycling creep of metal matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 141, 199-207.	2.6	17
167	Instabilities in the vacuum plasma spraying process. Surface and Coatings Technology, 1991, 46, 25-38.	2.2	6
168	The effect of interfacial reaction on thermal properties of titanium reinforced with particulate SiC. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 1991, 141, 129-138.	2.6	20
169	Interfacial fracture toughness of vacuum-plasma-sprayed coatings. Surface and Coatings Technology, 1991, 45, 333-342.	2.2	16
170	A simple procedure for the characterization of spray deposition processes — The linescan test. Surface and Coatings Technology, 1990, 41, 103-115.	2.2	18
171	Intra-crystalline liquation as a result of solute supersaturation in metallic slurries. Acta Metallurgica, 1989, 37, 663-674.	2.1	5
172	A simple development of the shear lag theory appropriate for composites with a relatively small modulus mismatch. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 122, 183-192.	2.6	92
173	Extrusion and high-temperature deformation of fibre-reinforced aluminium. Composites Science and Technology, 1989, 35, 121-157.	3.8	55
174	The fabrication and properties of metal-matrix composites based on aluminium alloy infiltrated alumina fibre preforms. Composites Science and Technology, 1985, 23, 287-301.	3.8	42
175	Modelling of heat flow in solidification. Materials Science and Engineering, 1984, 65, 111-124.	0.1	39
176	Microstructure and cooling conditions of steel solidified in the continuous casting mould. Archiv FÃ $\frac{1}{4}$ r Das EisenhÃ $\frac{1}{4}$ ttenwesen, 1982, 53, 91-96.	0.1	6
177	An Alî—, Fe intermetallic phase formed during controlled solidification. Scripta Metallurgica, 1981, 15, 1211-1216.	1.2	91
178	Experimental investigation of a multi-stage purification process for metals. Journal of Crystal Growth, 1981, 55, 317-324.	0.7	4
179	Heat flow in controlled directional solidification of metals. Journal of Crystal Growth, 1980, 50, 691-700.	0.7	34
180	Assessment of a new model for heat flow during unidirectional solidification of metals. International Journal of Heat and Mass Transfer, 1980, 23, 773-782.	2.5	26

#	Article	IF	CITATIONS
181	Heat flow in controlled directional solidification of metals. Journal of Crystal Growth, 1980, 50, 684-690.	0.7	47
182	Theoretical solute redistribution during a modified form of zone refining — cascade purification. Journal of Crystal Growth, 1979, 47, 85-92.	0.7	1
183	Comparison between Stress-Strain Plots Obtained from Indentation Plastometry, Based on Residual Indent Profiles, and from Uniaxial Testing. SSRN Electronic Journal, 0, , .	0.4	O
184	A Constitutive Stress–Strain Law for Metals with Sigmoidal Curves. Advanced Engineering Materials, 0, , 2100739.	1.6	1
185	Use of Profilometry-Based Indentation Plastometry to Obtain Stress-Strain Curves from Small Superalloy Components Made by Additive Manufacturing. SSRN Electronic Journal, 0, , .	0.4	1
186	Creep of particle and short fibre reinforced polyurethane rubber. Mechanics of Time-Dependent Materials, $0, 1$.	2.3	1