Eduardo Cerqueira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8216346/publications.pdf

Version: 2024-02-01

430442 454577 1,221 91 18 citations g-index h-index papers

92 92 92 1170 docs citations times ranked citing authors all docs

30

#	Article	IF	CITATIONS
1	Dynamic Microservice Allocation for Virtual Reality Distribution With QoE Support. IEEE Transactions on Network and Service Management, 2022, 19, 729-740.	3.2	14
2	Evaluation of an Adaptive Resource Allocation for LoRaWAN. Journal of Signal Processing Systems, 2022, 94, 65-79.	1.4	7
3	Smart Unmanned Aerial Vehicles as base stations placement to improve the mobile network operations. Computer Communications, 2022, 181, 45-57.	3.1	14
4	Swarm-Based and Energy-Aware Unmanned Aerial Vehicle System for Video Delivery of Mobile Objects. IEEE Transactions on Vehicular Technology, 2022, 71, 766-779.	3.9	3
5	A Survey on Long-Range Wide-Area Network Technology Optimizations. IEEE Access, 2021, 9, 106079-106106.	2.6	38
6	Drone Swarms as Networked Control Systems by Integration of Networking and Computing. Sensors, 2021, 21, 2642.	2.1	34
7	Proactive radio- and QoS-aware UAV as BS deployment to improve cellular operations. Computer Networks, 2021, 200, 108486.	3.2	3
8	Adaptive priority-aware LoRaWAN resource allocation for Internet of Things applications. Ad Hoc Networks, 2021, 122, 102598.	3 . 4	15
9	Predictive UAV Base Station Deployment and Service Offloading With Distributed Edge Learning. IEEE Transactions on Network and Service Management, 2021, 18, 3955-3972.	3. 2	9
10	Towards the Future of Edge Computing in the Sky: Outlook and Future Directions. , 2021, , .		3
11	Cluster-Based Control Plane Messages Management in Software-Defined Flying Ad-Hoc Network. Sensors, 2020, 20, 67.	2.1	13
12	Hybrid Routing, Modulation, Spectrum and Core Allocation Based on Mapping Scheme. Sensors, 2020, 20, 6393.	2.1	2
13	Experimenting Long Range Wide Area Network in an e-Health Environment: Discussion and Future Directions. , 2020, , .		6
14	An Efficient Heuristic LoRaWAN Adaptive Resource Allocation for IoT Applications. , 2020, , .		9
15	LoRaWAN Gateway Placement Model for Dynamic Internet of Things Scenarios. Sensors, 2020, 20, 4336.	2.1	25
16	Mobility Management With Transferable Reinforcement Learning Trajectory Prediction. IEEE Transactions on Network and Service Management, 2020, 17, 2102-2116.	3.2	11
17	A multi-tier fog content orchestrator mechanism with quality of experience support. Computer Networks, 2020, 177, 107288.	3.2	11
18	Data Improvement Model Based on ECG Biometric for User Authentication and Identification. Sensors, 2020, 29, 2920.	2.1	17

#	Article	IF	Citations
19	Traffic Model Based on Autoregression for PPG Signals in Wearable Networks. IEEE Networking Letters, 2020, 2, 49-53.	1.5	3
20	Skipping-based handover algorithm for video distribution over ultra-dense VANET. Computer Networks, 2020, 176, 107252.	3.2	6
21	Vehicular software-defined networking and fog computing: Integration and design principles. Ad Hoc Networks, 2019, 82, 172-181.	3.4	70
22	Heart of IoT: ECG as biometric sign for authentication and identification. , 2019, , .		17
23	Quality of experience and quality of service-aware handover for video transmission in heterogeneous networks. International Journal of Network Management, 2019, 31, e2064.	1.4	6
24	A Method for Identifying eHealth Applications Using Side-Channel Information. , 2019, , .		3
25	Optimal Gateway Placement Based on Fuzzy C-Means for Low Power Wide Area Networks. , 2019, , .		12
26	A Handover Algorithm for Video Sharing over Vehicular Networks. , 2019, , .		2
27	STFANET: SDN-Based Topology Management for Flying Ad Hoc Network. IEEE Access, 2019, 7, 173499-173514.	2.6	44
28	Software-defined unmanned aerial vehicles networking for video dissemination services. Ad Hoc Networks, 2019, 83, 68-77.	3.4	46
29	Information-Driven Software-Defined Vehicular Networks: Adapting Flexible Architecture to Various Scenarios. IEEE Vehicular Technology Magazine, 2019, 14, 98-107.	2.8	14
30	Efficient high-resolution video delivery over VANETs. Wireless Networks, 2019, 25, 2587-2602.	2.0	11
31	Software-defined handover decision engine for heterogeneous cloud radio access networks. Computer Communications, 2018, 115, 21-34.	3.1	29
32	A Comparative Analysis of DSRC and VLC for Video Dissemination in Platoon of Vehicles. , 2018, , .		3
33	Cooperative UAV Scheme for Enhancing Video Transmission and Global Network Energy Efficiency. Sensors, 2018, 18, 4155.	2.1	17
34	ECG-Based User Authentication and Identification Method on VANETs., 2018, , .		14
35	A Comparative Analysis of Platoon-Based Driving Protocols for Video Dissemination over VANETs. , 2018, , .		0
36	A Game Theory Approach for Platoon-Based Driving for Multimedia Transmission in VANETs. Wireless Communications and Mobile Computing, 2018, 2018, 1-11.	0.8	14

#	Article	IF	Citations
37	Vehicular Networks. ACM Computing Surveys, 2017, 49, 1-29.	16.1	38
38	Management of virtual network resources for multimedia applications. Multimedia Systems, 2017, 23, 405-419.	3.0	2
39	Two-criteria Pareto frontier for virtual network allocation on Edge-as-a-Service networks. Computer Communications, 2017, 102, 58-66.	3.1	3
40	Long-Term Spatiotemporal Analysis of Social Media for Device-to-Device Networks. , 2016, , .		2
41	Towards a QoE-driven mechanism for improved H.265 video delivery. , 2016, , .		9
42	A combined energy-bandwidth approach to allocate resilient virtual software defined networks. Journal of Network and Computer Applications, 2016, 69, 98-106.	5.8	9
43	QoE-driven dissemination of real-time videos over vehicular networks. Computer Communications, 2016, 91-92, 133-147.	3.1	28
44	ICARUS: Improvement of traffic Condition through an Alerting and Re-routing System. Computer Networks, 2016, 110, 118-132.	3.2	39
45	Trends in Human-Centric Multimedia Networking scenarios. , 2016, , .		5
46	Pervasive forwarding mechanism for mobile social networks. Computer Networks, 2016, 111, 6-16.	3.2	5
47	Cognitive radio based connectivity management for resilient end-to-end communications in VANETs. Computer Communications, 2016, 79, 1-8.	3.1	12
48	A Two-Tier Adaptive Data Aggregation Approach for M2M Group-Communication. IEEE Sensors Journal, 2016, 16, 823-835.	2.4	20
49	Shielding video streaming against packet losses over VANETs. Wireless Networks, 2016, 22, 2563-2577.	2.0	15
50	NVP: A Network Virtualization Proxy for Software Defined Networking. International Journal of Computers, Communications and Control, 2016, 11, 697.	1.2	1
51	QoE-driven video delivery improvement using packet loss prediction. International Journal of Parallel, Emergent and Distributed Systems, 2015, 30, 478-493.	0.7	7
52	Adaptive QoE-driven video transmission over Vehicular Ad-hoc Networks., 2015,,.		9
53	Indoor patient monitoring through Wi-Fi and mobile computing. , 2015, , .		7
54	A distributed beaconless routing protocol for real-time video dissemination in multimedia VANETs. Computer Communications, 2015, 58, 40-52.	3.1	50

#	Article	IF	Citations
55	Context-aware adaptation mechanism for video dissemination over Flying Ad-Hoc Networks. , 2014, , .		1
56	Towards the enhancement of UAV video transmission with motion intensity awareness. , 2014, , .		6
57	Enhanced connectivity for robust multimedia transmission in UAV networks., 2014,,.		4
58	A new architecture for secure storage and sharing of health records in the cloud using federated identity attributes. , 2014 , , .		4
59	Context-aware opportunistic routing in mobile ad-hoc networks incorporating node mobility. , 2014, ,		11
60	Ensuring QoE in wireless networks with adaptive FEC and Fuzzy Logic-based mechanisms. , 2014, , .		4
61	A real-time video quality estimator for emerging wireless multimedia systems. Wireless Networks, 2014, 20, 1759-1776.	2.0	20
62	A beaconless Opportunistic Routing based on a cross-layer approach for efficient video dissemination in mobile multimedia IoT applications. Computer Communications, 2014, 45, 21-31.	3.1	57
63	A Comparative Analysis of Beaconless Opportunistic Routing Protocols for Video Dissemination over Flying Ad-Hoc Networks. Lecture Notes in Computer Science, 2014, , 253-265.	1.0	7
64	A Cross-Layer QoE-Based Approach for Event-Based Multi-Tier Wireless Multimedia Sensor Networks. International Journal of Adaptive Resilient and Autonomic Systems, 2014, 5, 1-18.	0.3	2
65	Cross-Layer FEC-Based Mechanism for Packet Loss Resilient Video Transmission. Lecture Notes in Computer Science, 2013, , 320-336.	1.0	11
66	Adaptive video-aware FEC-based mechanism with unequal error protection scheme., 2013,,.		13
67	Topology and Link quality-aware Geographical opportunistic routing in wireless ad-hoc networks. , 2013, , .		18
68	Advanced communication system for rich and green smart Grid networking. , 2013, , .		0
69	A Routing Protocol Based on Energy and Link Quality for Internet of Things Applications. Sensors, 2013, 13, 1942-1964.	2.1	111
70	Adaptive Contact Volume prediction in Delay Tolerant Networks. , 2013, , .		0
71	Video quality estimator for wireless mesh networks. , 2012, , .		16
72	QoS-RRC: an overprovisioning-centric and load balance-aided solution for future internet QoS-oriented routing. Multimedia Tools and Applications, 2012, 61, 721-746.	2.6	3

#	Article	IF	Citations
73	A fuzzy queue-aware routing approach for wireless mesh networks. Multimedia Tools and Applications, 2012, 61, 747-768.	2.6	2
74	Framework for the integrated video quality assessment. Multimedia Tools and Applications, 2012, 61, 787-817.	2.6	33
75	Guest editorial special issue on quality of experience for multimedia applications. Multimedia Tools and Applications, 2012, 61, 697-701.	2.6	0
76	Session-Oriented Communication System for truly reliable and robust Smart Grid., 2011,,.		2
77	Recent advances in multimedia networking. Multimedia Tools and Applications, 2011, 54, 635-647.	2.6	21
78	Guest editorial special issue on "Future multimedia networking― Multimedia Tools and Applications, 2011, 54, 545-549.	2.6	2
79	Using fuzzy link cost and dynamic choice of link quality metrics to achieve QoS and QoE in wireless mesh networks. Journal of Network and Computer Applications, 2011, 34, 506-516.	5.8	14
80	A QoE Fuzzy Routing Protocol for Wireless Mesh Networks. Lecture Notes in Computer Science, 2010, , 1-12.	1.0	8
81	Quality of Experience management framework for real-time multimedia applications. International Journal of Internet Protocol Technology, 2009, 4, 54.	0.2	23
82	Seamless handover and QoS provisioning for mobile video applications in an integrated WiMAX/MIP/MPLS architecture. International Journal of Advanced Media and Communication, 2009, 3, 404.	0.2	0
83	QoS Support for Multi-user Sessions in IP-based Next Generation Networks. Mobile Networks and Applications, 2008, 13, 366.	2.2	7
84	Mobility management for multi-user sessions in next generation wireless systems. Computer Communications, 2008, 31, 915-934.	3.1	8
85	Scalable Multimedia Group Communications through the Over-Provisioning of Network Resources. Lecture Notes in Computer Science, 2008, , 52-63.	1.0	7
86	Mecanismo de Proteção em SDM-EON Ciente da Prioridade de Tráfego. , 0, , .		0
87	Mecanismo de Alocação de Recursos para LoRaWAN Ciente da Prioridade das AplicaçÃμes de IoT. , 0, , .		0
88	Mecanismo de Comunicação para Migração de Serviços Ciente da Localização de Nuvem e Névoas. ,	0,,.	0
89	Modelo de Detecção de Fraudes Elétricas Baseado em Aprendizado de Máquina. , 0, , .		0
90	Distribuição de Conteúdo Sob Demanda Através da Alocação de Microserviços Dinâmicos na Borda e Núcleo da Rede. , 0, , .	!	0