
Richard G Gardner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8216334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acute ethanol stress induces sumoylation of conserved chromatin structural proteins in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2021, 32, 1121-1133.	2.1	5
2	The San1 Ubiquitin Ligase Avidly Recognizes Misfolded Proteins through Multiple Substrate Binding Sites. Biomolecules, 2021, 11, 1619.	4.0	5
3	The extent of Ssa1/Ssa2 Hsp70 chaperone involvement in nuclear protein quality control degradation varies with the substrate. Molecular Biology of the Cell, 2020, 31, 221-233.	2.1	18
4	Osmolyte accumulation regulates the SUMOylation and inclusion dynamics of the prionogenic Cyc8-Tup1 transcription corepressor. PLoS Genetics, 2019, 15, e1008115.	3.5	11
5	Sex-dependent behavioral impairments in the HdhQ350/+ mouse line. Behavioural Brain Research, 2018, 337, 34-45.	2.2	10
6	Integrated Proteogenomic Approach for Identifying Degradation Motifs in Eukaryotic Cells. Methods in Molecular Biology, 2018, 1844, 121-136.	0.9	1
7	Protein Quality Control Degradation in the Nucleus. Annual Review of Biochemistry, 2018, 87, 725-749.	11.1	60
8	From Precise Slicing to General SHREDding: The Ubiquitin Ligase Ubr1 Roqs as a Multipurpose Protein Terminator. Molecular Cell, 2018, 70, 989-990.	9.7	1
9	Structure of the Shroom-Rho Kinase Complex Reveals a Binding Interface with Monomeric Shroom That Regulates Cell Morphology and Stimulates Kinase Activity. Journal of Biological Chemistry, 2016, 291, 25364-25374.	3.4	19
10	The San1 Ubiquitin Ligase Functions Preferentially with Ubiquitin-conjugating Enzyme Ubc1 during Protein Quality Control. Journal of Biological Chemistry, 2016, 291, 18778-18790.	3.4	13
11	Mapping the Landscape of a Eukaryotic Degronome. Molecular Cell, 2016, 63, 1055-1065.	9.7	51
12	Protein quality control in the nucleus. Current Opinion in Cell Biology, 2016, 40, 81-89.	5.4	30
13	Dynamic Sumoylation of a Conserved Transcription Corepressor Prevents Persistent Inclusion Formation during Hyperosmotic Stress. PLoS Genetics, 2016, 12, e1005809.	3.5	17
14	Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination. ELife, 2016, 5, .	6.0	11
15	Digging for Buried Amino Acids Unearths New Protein Quality Control Treasure. Structure, 2015, 23, 1151-1152.	3.3	0
16	A Conserved Deubiquitinating Enzyme Uses Intrinsically Disordered Regions to Scaffold Multiple Protein Interaction Sites. Journal of Biological Chemistry, 2015, 290, 20601-20612.	3.4	22
17	Requirement for Cdc48/p97 in nuclear protein quality control degradation varies with the substrate and correlates with substrate insolubility. Journal of Cell Science, 2014, 127, 1980-91.	2.0	46
18	Cellular maintenance of nuclear protein homeostasis. Cellular and Molecular Life Sciences, 2014, 71, 1865-1879.	5.4	26

#	Article	IF	CITATIONS
19	The Recruitment of the <i>Saccharomyces cerevisiae</i> Paf1 Complex to Active Genes Requires a Domain of Rtf1 That Directly Interacts with the Spt4-Spt5 Complex. Molecular and Cellular Biology, 2013, 33, 3259-3273.	2.3	53
20	Means of self-preservation: how an intrinsically disordered ubiquitin-protein ligase averts self-destruction. Molecular Biology of the Cell, 2013, 24, 1041-1052.	2.1	25
21	Substrate Recognition in Nuclear Protein Quality Control Degradation Is Governed by Exposed Hydrophobicity That Correlates with Aggregation and Insolubility. Journal of Biological Chemistry, 2013, 288, 6130-6139.	3.4	46
22	Physical and Genetic Associations of the Irc20 Ubiquitin Ligase with Cdc48 and SUMO. PLoS ONE, 2013, 8, e76424.	2.5	7
23	Cdc73 Subunit of Paf1 Complex Contains C-terminal Ras-like Domain That Promotes Association of Paf1 Complex with Chromatin. Journal of Biological Chemistry, 2012, 287, 10863-10875.	3.4	50
24	A Conserved Deubiquitinating Enzyme Controls Cell Growth by Regulating RNA Polymerase I Stability. Cell Reports, 2012, 2, 372-385.	6.4	57
25	Selective destruction of abnormal proteins by ubiquitin-mediated protein quality control degradation. Seminars in Cell and Developmental Biology, 2012, 23, 530-537.	5.0	57
26	A yeast model for polyalanine-expansion aggregation and toxicity. Molecular Biology of the Cell, 2011, 22, 1971-1984.	2.1	10
27	Disorder Targets Misorder in Nuclear Quality ControlÂDegradation: A Disordered Ubiquitin Ligase Directly Recognizes Its Misfolded Substrates. Molecular Cell, 2011, 41, 93-106.	9.7	172
28	How a disordered ubiquitin ligase maintains order in nuclear protein homeostasis. Nucleus, 2011, 2, 264-270.	2.2	24
29	Exposed hydrophobicity is a key determinant of nuclear quality control degradation. Molecular Biology of the Cell, 2011, 22, 2384-2395.	2.1	86
30	Cotrafficking of SV2 and Synaptotagmin at the Synapse. Journal of Neuroscience, 2010, 30, 5569-5578.	3.6	145
31	α-Dystrobrevin-1 recruits α-catulin to the α _{1D} -adrenergic receptor/dystrophin-associated protein complex signalosome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21854-21859.	7.1	33
32	Ubp10/Dot4p Regulates the Persistence of Ubiquitinated Histone H2B: Distinct Roles in Telomeric Silencing and General Chromatin. Molecular and Cellular Biology, 2005, 25, 6123-6139.	2.3	143
33	Degradation-Mediated Protein Quality Control in the Nucleus. Cell, 2005, 120, 803-815.	28.9	248
34	Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nature Cell Biology, 2001, 3, 24-29.	10.3	427
35	An Oxysterol-derived Positive Signal for 3-Hydroxy- 3-methylglutaryl-CoA Reductase Degradation in Yeast. Journal of Biological Chemistry, 2001, 276, 8681-8694.	3.4	48
36	In Vivo Action of the HRD Ubiquitin Ligase Complex: Mechanisms of Endoplasmic Reticulum Quality Control and Sterol Regulation. Molecular and Cellular Biology, 2001, 21, 4276-4291.	2.3	113

RICHARD G GARDNER

#	Article	IF	CITATIONS
37	Endoplasmic Reticulum Degradation Requires Lumen to Cytosol Signaling. Journal of Cell Biology, 2000, 151, 69-82.	5.2	277
38	HRDGene Dependence of Endoplasmic Reticulum-associated Degradation. Molecular Biology of the Cell, 2000, 11, 1697-1708.	2.1	100
39	A Highly Conserved Signal Controls Degradation of 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) Reductase in Eukaryotes. Journal of Biological Chemistry, 1999, 274, 31671-31678.	3.4	128
40	Sequence Determinants for Regulated Degradation of Yeast 3-Hydroxy-3-Methylglutaryl-CoA Reductase, an Integral Endoplasmic Reticulum Membrane Protein. Molecular Biology of the Cell, 1998, 9, 2611-2626.	2.1	72
41	A Prevotella ruminicola B 1 4 Operon Encoding Extracellular Polysaccharide Hydrolases. Current Microbiology, 1997, 35, 274-277.	2.2	23
42	The effect of carbohydrates on the expression of thePrevotella ruminicola1,4-β-D-endoglucanase. FEMS Microbiology Letters, 1995, 125, 305-310.	1.8	17