Fei Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8216319/publications.pdf

Version: 2024-02-01

147801 161849 3,207 81 31 54 citations h-index g-index papers 81 81 81 3455 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	High protein and high oil emulsions: Phase diagram, stability and interfacial adsorption. LWT - Food Science and Technology, 2022, 153, 112464.	5.2	4
2	Modulating physicochemical properties of collagen films by cross-linking with glutaraldehyde at varied pH values. Food Hydrocolloids, 2022, 124, 107270.	10.7	32
3	Calcium spraying for fabricating collagen-alginate composite films with excellent wet mechanical properties. Food Hydrocolloids, 2022, 124, 107340.	10.7	12
4	Collagen Fibril-Assembled Skin-Simulated Membrane for Continuous Molecular Separation. ACS Applied Materials & Diterfaces, 2022, 14, 7358-7368.	8.0	9
5	Customization of liquid-core sodium alginate beads by molecular engineering. Carbohydrate Polymers, 2022, 284, 119047.	10.2	12
6	Effects of Zn-Enriched Bifidobacterium longum on the Growth and Reproduction of Rats. Nutrients, 2022, 14, 783.	4.1	4
7	Latent variable point-to-point iterative learning model predictive control via reference trajectory updating. European Journal of Control, 2022, 65, 100631.	2.6	5
8	Reducing synthetic colorants release from alginate-based liquid-core beads with a zein shell. Food Chemistry, 2022, 384, 132493.	8.2	3
9	Effect of calcium ions on the freeze-drying survival of probiotic encapsulated in sodium alginate. Food Hydrocolloids, 2022, 130, 107668.	10.7	20
10	The improvement of texture properties and storage stability for kappa carrageenan in developing vegan gummy candies. Journal of the Science of Food and Agriculture, 2022, 102, 3693-3702.	3.5	9
11	The dual effect of shellac on survival of spray-dried Lactobacillus rhamnosus GG microcapsules. Food Chemistry, 2022, 389, 132999.	8.2	13
12	Study on the Pasting Properties of Indica and Japonica Waxy Rice. Foods, 2022, 11, 1132.	4.3	5
13	Thermo-mechanical response of liquid-core beads as affected by alginate molecular structure. Food Hydrocolloids, 2022, 131, 107777.	10.7	5
14	Regulating the Physicochemical Properties of Chitosan Films through Concentration and Neutralization. Foods, 2022, 11, 1657.	4.3	7
15	Regulator RcsB Controls Prodigiosin Synthesis and Various Cellular Processes in Serratia marcescens JNB5-1. Applied and Environmental Microbiology, 2021, 87, .	3.1	13
16	Biochar/Kevlar Nanofiber Mixed Matrix Nanofiltration Membranes with Enhanced Dye/Salt Separation Performance. Membranes, 2021, 11, 443.	3.0	7
17	Effect of transglutaminase crosslinking on solubility property and mechanical strength of gelatin-zein composite films. Food Hydrocolloids, 2021, 116, 106649.	10.7	54
18	Collagen peptides with DPP-IV inhibitory activity from sheep skin and their stability to in vitro gastrointestinal digestion. Food Bioscience, 2021, 42, 101161.	4.4	16

#	Article	IF	Citations
19	Influence of softwood cellulose fiber and chitosan on the film-forming properties of collagen fiber. Food Bioscience, 2021, 42, 101056.	4.4	8
20	Promoting the Calcium-Uptake Bioactivity of Casein Phosphopeptides in vitro and in vivo. Frontiers in Nutrition, 2021, 8, 743791.	3.7	7
21	Controlled release of antioxidants from active food packaging: A review. Food Hydrocolloids, 2021, 120, 106992.	10.7	83
22	Developing new products with kernel partial least squares model inversion. Computers and Chemical Engineering, 2021, 155, 107537.	3.8	8
23	Film-forming properties of guar gum, tara gum and locust bean gum. Food Hydrocolloids, 2020, 98, 105007.	10.7	72
24	Effect of pre-treatment temperatures on the film-forming properties of collagen fiber dispersions. Food Hydrocolloids, 2020, 107, 105326.	10.7	31
25	Facile preparation of collagen fiber–glycerol-carboxymethyl cellulose composite film by immersing method. Carbohydrate Polymers, 2020, 229, 115429.	10.2	27
26	Colorimetric detection toward halide ions by a silver nanocluster hydrogel. Talanta, 2020, 211, 120717.	5.5	17
27	Latent variable iterative learning model predictive control for multivariable control of batch processes. Journal of Process Control, 2020, 94, 1-11.	3.3	20
28	Improvement on properties of collagen casing films by aging treatment after oil coating. Food Packaging and Shelf Life, 2020, 25, 100519.	7.5	4
29	Regulation of nano-encapsulated tea polyphenol release from gelatin films with different Bloom values. Food Hydrocolloids, 2020, 108, 106045.	10.7	46
30	Improvement of the water resistance and ductility of gelatin film by zein. Food Hydrocolloids, 2020, 105, 105804.	10.7	100
31	Batch-to-Batch and Within-Batch Input Trajectory Adjustment Based on the Probabilistic Latent Variable Model. Industrial & Engineering Chemistry Research, 2020, 59, 5000-5009.	3.7	2
32	Improvement in physicochemical properties of collagen casings by glutaraldehyde cross-linking and drying temperature regulating. Food Chemistry, 2020, 318, 126404.	8.2	42
33	Versatile preparation of spherically and mechanically controllable liquid-core-shell alginate-based bead through interfacial gelation. Carbohydrate Polymers, 2020, 236, 115980.	10.2	20
34	Fabrication of films with tailored properties by regulating the swelling of collagen fiber through pH adjustment. Food Hydrocolloids, 2020, 108, 106016.	10.7	23
35	Input Trajectory Adjustment within Batch Runs Based on Latent Variable Models. Industrial & Description of the Engineering Chemistry Research, 2019, 58, 15562-15572.	3.7	4
36	Tailoring physicochemical properties of chitosan films and their protective effects on meat by varying drying temperature. Carbohydrate Polymers, 2019, 212, 150-159.	10.2	38

#	Article	IF	CITATIONS
37	Preparation of chitosan films by neutralization for improving their preservation effects on chilled meat. Food Hydrocolloids, 2019, 90, 50-61.	10.7	103
38	Study on the emulsifying stability and interfacial adsorption of pea proteins. Food Hydrocolloids, 2019, 88, 247-255.	10.7	110
39	Effect of aging treatment on the physicochemical properties of collagen films. Food Hydrocolloids, 2019, 87, 436-447.	10.7	58
40	Bioactive peptide isolated from casein phosphopeptides promotes calcium uptake <i>in vitro</i> and <i>in vivo</i> . Food and Function, 2018, 9, 2251-2260.	4.6	43
41	Antimicrobial Carvacrol in Solution Blowâ€Spun Fishâ€Skin Gelatin Nanofibers. Journal of Food Science, 2018, 83, 984-991.	3.1	19
42	Effects of casein phosphopeptides on calcium absorption and metabolism bioactivity <i>in vitro</i> and <i>in vivo</i> . Food and Function, 2018, 9, 5220-5229.	4.6	24
43	Preparation of Fish Skin Gelatin-Based Nanofibers Incorporating Cinnamaldehyde by Solution Blow Spinning. International Journal of Molecular Sciences, 2018, 19, 618.	4.1	24
44	Bioactive Peptides Isolated from Casein Phosphopeptides Enhance Calcium and Magnesium Uptake in Caco-2 Cell Monolayers. Journal of Agricultural and Food Chemistry, 2017, 65, 2307-2314.	5.2	41
45	Solution Blow Spinning of Foodâ€Grade Gelatin Nanofibers. Journal of Food Science, 2017, 82, 1402-1411.	3.1	14
46	Characterization of film-forming solutions and films incorporating free and nanoencapsulated tea polyphenol prepared by gelatins with different Bloom values. Food Hydrocolloids, 2017, 72, 381-388.	10.7	20
47	Physicochemical stability of \hat{l}^2 -carotene and \hat{l} ±-tocopherol enriched nanoemulsions: Influence of carrier oil, emulsifier and antioxidant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 550-559.	4.7	47
48	Physicochemical properties of \hat{l}^2 -carotene and eugenol co-encapsulated flax seed oil powders using OSA starches as wall material. Food Hydrocolloids, 2017, 73, 274-283.	10.7	61
49	Controlled-release of tea polyphenol from gelatin films incorporated with different ratios of free/nanoencapsulated tea polyphenols into fatty food simulants. Food Hydrocolloids, 2017, 62, 212-221.	10.7	117
50	Study of combined effects of glycerol and transglutaminase on properties of gelatin films. Food Hydrocolloids, 2017, 65, 1-9.	10.7	105
51	Preparation of Zein Fibers Using Solution Blow Spinning Method. Journal of Food Science, 2016, 81, N3015-N3025.	3.1	21
52	pH and temperature stability of (\hat{a}^2)-epigallocatechin-3-gallate- \hat{l}^2 -cyclodextrin inclusion complex-loaded chitosan nanoparticles. Carbohydrate Polymers, 2016, 149, 340-347.	10.2	26
53	Effect of Type of Plasticizers on Mechanical and Water Barrier Properties of Transglutaminase Cross-Linked Zein–Oleic Acid Composite Films. International Journal of Food Engineering, 2016, 12, 365-376.	1.5	10
54	Chitosan/sulfobutylether- \hat{l}^2 -cyclodextrin nanoparticles as a potential approach for tea polyphenol encapsulation. Food Hydrocolloids, 2016, 57, 291-300.	10.7	75

#	Article	IF	Citations
55	Tailoring physical properties of transglutaminase-modified gelatin films by varying drying temperature. Food Hydrocolloids, 2016, 58, 20-28.	10.7	96
56	Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions. Food Chemistry, 2016, 197, 75-83.	8.2	124
57	Microwave-assisted ultrafast synthesis of silver nanoparticles for detection of Hg2+. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 153, 206-211.	3.9	35
58	Influence of carrier oil type, particle size on inÂvitro lipid digestion and eugenol release in emulsion and nanoemulsions. Food Hydrocolloids, 2016, 52, 415-422.	10.7	74
59	Preparation of Gelatin Films Incorporated with Tea Polyphenol Nanoparticles for Enhancing Controlled-Release Antioxidant Properties. Journal of Agricultural and Food Chemistry, 2015, 63, 3987-3995.	5.2	109
60	Effect of sodium acetate and drying temperature on physicochemical and thermomechanical properties of gelatin films. Food Hydrocolloids, 2015, 45, 140-149.	10.7	76
61	Physicochemical and morphological properties of size-controlled chitosan–tripolyphosphate nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 465, 137-146.	4.7	168
62	Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study. Food Hydrocolloids, 2015, 44, 309-319.	10.7	201
63	The effect of high moisture heat-acid treatment on the structure and digestion property of normal maize starch. Food Chemistry, 2014, 159, 222-229.	8.2	69
64	Physicochemical and thermomechanical characterization of tara gum edible films: Effect of polyols as plasticizers. Carbohydrate Polymers, 2014, 111, 359-365.	10.2	97
65	Design and Characterization of Controlled-Release Edible Packaging Films Prepared with Synergistic Whey-Protein Polysaccharide Complexes. Journal of Agricultural and Food Chemistry, 2013, 61, 5824-5833.	5.2	35
66	Transfer Matrix Modeling of Synthetic-Jet Actuators. Journal of Fluid Science and Technology, 2012, 7, 209-223.	0.6	0
67	Binding properties of apoferritin to nicotinamide and calcium. European Food Research and Technology, 2012, 235, 893-899.	3.3	4
68	Synergistic effects of whey protein–polysaccharide complexes on the controlled release of lipidâ€soluble and waterâ€soluble vitamins in W ₁ /O/W ₂ double emulsion systems. International Journal of Food Science and Technology, 2012, 47, 248-254.	2.7	61
69	Progress on Active Control of Open Cavities. , 2011, , .		3
70	Shear Layer Time-Delay Correction Using a Non-Intrusive Acoustic Point Source. International Journal of Aeroacoustics, 2011, 10, 497-530.	1.3	25
71	Experimental Study of Adaptive Control of High-Speed Flow-Induced Cavity Oscillations. Journal of Fluid Science and Technology, 2011, 6, 701-716.	0.6	4
72	Study of the physicochemical properties of the BSA: flavonoid nanoparticle. European Food Research and Technology, 2011, 233, 275-283.	3.3	21

Fei Liu

#	Article	IF	Citations
73	Comparison of Microphone Array Processing Techniques for Aeroacoustic Measurements. International Journal of Aeroacoustics, 2010, 9, 733-761.	1.3	27
74	Demonstration of a wireless, self-powered, electroacoustic liner system. Journal of the Acoustical Society of America, 2009, 125, 873-881.	1.1	21
75	Uncertainty Analysis of the Standard Delay-and-Sum Beamformer and Array Calibration. , 2009, , .		3
76	A Comparative Study of a 1/4-Scale Gulfstream G550 Aircraft Nose Gear Model. , 2009, , .		39
77	Acoustic energy harvesting using an electromechanical Helmholtz resonator. Journal of the Acoustical Society of America, 2008, 123, 1983-1990.	1.1	136
78	An Analysis of Different Measurement Techniques for Airfoil Trailing Edge Noise., 2008,,.		10
79	A multiple degree of freedom electromechanical Helmholtz resonator. Journal of the Acoustical Society of America, 2007, 122, 291-301.	1.1	55
80	Optimization of an Electromechanical Helmholtz Resonator. , 2006, , .		11
81	A Self-Powered Wireless Active Acoustic Liner. , 2006, , .		3