Naoki Ishida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8216207/publications.pdf

Version: 2024-02-01

126907 123424 3,946 77 33 61 citations h-index g-index papers 116 116 116 2795 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Potential of Metal-Catalyzed C–C Single Bond Cleavage for Organic Synthesis. Journal of the American Chemical Society, 2016, 138, 13759-13769.	13.7	281
2	Light-Driven Carboxylation of $\langle i \rangle o \langle i \rangle$ -Alkylphenyl Ketones with CO $\langle sub \rangle 2 \langle sub \rangle$. Journal of the American Chemical Society, 2015, 137, 14063-14066.	13.7	205
3	Cleavage of Carbon–Carbon σ-Bonds of Four-Membered Rings. Chemical Reviews, 2021, 121, 264-299.	47.7	190
4	Synthesis of Pyridineâ^'Borane Complexes via Electrophilic Aromatic Borylation. Journal of Organic Chemistry, 2010, 75, 8709-8712.	3.2	177
5	Pyridineâ€Directed Palladiumâ€Catalyzed Phosphonation of C(sp ²)H Bonds. Angewandte Chemie - International Edition, 2013, 52, 9801-9804.	13.8	173
6	Atom―and Stepâ€Economical Pathway to Chiral Benzobicyclo[2.2.2]octenones through Carbon–Carbon Bond Cleavage. Angewandte Chemie - International Edition, 2012, 51, 2485-2488.	13.8	149
7	A Light/Ketone/Copper System for Carboxylation of Allylic Câ^'H Bonds of Alkenes with CO ₂ . Chemistry - A European Journal, 2016, 22, 6524-6527.	3.3	131
8	Cleavage of C–C and C–Si σ-Bonds and Their Intramolecular Exchange. Journal of the American Chemical Society, 2014, 136, 5912-5915.	13.7	124
9	Rhodium-Catalyzed Ring Opening of Benzocyclobutenols with Site-Selectivity Complementary to Thermal Ring Opening. Journal of the American Chemical Society, 2012, 134, 17502-17504.	13.7	120
10	Oxidative Addition of a Strained C–C Bond onto Electron-Rich Rhodium(I) at Room Temperature. Journal of the American Chemical Society, 2013, 135, 7142-7145.	13.7	110
11	Dehydrogenative Coupling of Benzylic and Aldehydic C–H Bonds. Journal of the American Chemical Society, 2020, 142, 3366-3370.	13.7	110
12	Asymmetric Synthesis of Planar Chiral Ferrocenes by Enantioselective Intramolecular C–H Arylation of <i>N</i> -(2-Haloaryl)ferrocenecarboxamides. Organic Letters, 2014, 16, 5336-5338.	4.6	109
13	Carboxylation of Benzylic and Aliphatic C–H Bonds with CO ₂ Induced by Light/Ketone/Nickel. Journal of the American Chemical Society, 2019, 141, 19611-19615.	13.7	105
14	Palladium-Catalyzed Intermolecular Exchange between C–C and C–Si σ-Bonds. Journal of the American Chemical Society, 2017, 139, 12414-12417.	13.7	102
15	\hat{l}^2 -Scission of Alkoxy Radicals in Synthetic Transformations. Chemistry Letters, 2017, 46, 1692-1700.	1.3	101
16	Synthesis of Chiral <i>N</i> -Heterocyclic Carbene Ligands with Rigid Backbones and Application to the Palladium-Catalyzed Enantioselective Intramolecular α-Arylation of Amides. Organic Letters, 2011, 13, 1666-1669.	4.6	91
17	1,5-Rhodium Shift in Rearrangement of $\langle i \rangle N \langle i \rangle$ -Arenesulfonylazetidin-3-ols into Benzosultams. Journal of the American Chemical Society, 2013, 135, 19103-19106.	13.7	82
18	sp ³ â€"sp ² vs sp ³ â€"sp ³ Câ€"C Site Selectivity in Rh-Catalyzed Ring Opening of Benzocyclobutenol: A DFT Study. Journal of the American Chemical Society, 2014, 136, 169-178.	13.7	69

#	Article	IF	CITATIONS
19	Ring-opening Fluorination of Cyclobutanols and Cyclopropanols Catalyzed by Silver. Chemistry Letters, 2015, 44, 821-823.	1.3	69
20	Stereoselective Synthesis of (<i>E</i>)-(Trisubstituted alkenyl)borinic Esters: Stereochemistry Reversed by Ligand in the Palladium-Catalyzed Reaction of Alkynylborates with Aryl Halides. Organic Letters, 2009, 11, 5434-5437.	4.6	63
21	Reactivity Change of Cyclobutanols towards Isocyanates: Rhodium Favors <i>C</i> arbamoylation over <i>O</i> arbamoylation. Angewandte Chemie - International Edition, 2013, 52, 11875-11878.	13.8	59
22	Asymmetric Carroll rearrangement of allyl \hat{l} ±-acetamido- \hat{l} 2-ketocarboxylates catalysed by a chiral palladium complex. Chemical Communications, 2005, , 3951.	4.1	54
23	Stereospecific ring expansion from orthocyclophanes with central chirality to metacyclophanes with planar chirality. Nature Communications, 2014, 5, 3111.	12.8	53
24	Intramolecular σ-Bond Metathesis Between Carbon–Carbon and Silicon–Silicon Bonds. Organic Letters, 2012, 14, 3230-3232.	4.6	51
25	Synthesis of Enantiopure Dehydropiperidinones from α-Amino Acids and Alkynes via Azetidin-3-ones. Organic Letters, 2012, 14, 3898-3901.	4.6	51
26	Solarâ€Driven Incorporation of Carbon Dioxide into αâ€Amino Ketones. Angewandte Chemie - International Edition, 2012, 51, 11750-11752.	13.8	50
27	Synthesis of 3,3-disubstituted \hat{l} ±-tetralones by rhodium-catalysed reaction of 1-(2-haloaryl)cyclobutanols. Chemical Communications, 2012, 48, 1973.	4.1	50
28	Synthesis of Amineâ 'Borane Intramolecular Complexes through Palladium-Catalyzed Rearrangement of Ammonioalkynyltriarylborates. Organic Letters, 2008, 10, 1279-1281.	4.6	49
29	Construction of tetralin skeletons based on rhodium-catalysed site-selective ring opening of benzocyclobutenols. Chemical Communications, 2015, 51, 1882-1885.	4.1	47
30	Solvent and ligand partition reaction pathways in nickel-mediated carboxylation of methylenecyclopropanes. Chemical Communications, 2006, , 643.	4.1	42
31	Stereoselective synthesis of trisubstituted alkenylboranes by palladium-catalysed reaction of alkynyltriarylborates with aryl halides. Chemical Communications, 2007, , 4381.	4.1	37
32	Synthesis of Pyridine-N-oxide–Borane Intramolecular Complexes by Palladium-Catalyzed Reaction of 2-Bromopyridine-N-oxides with Alkynyltriarylborates. Organic Letters, 2011, 13, 3008-3011.	4.6	35
33	Cooperation of a Nickel–Bipyridine Complex with Light for Benzylic Câ^'H Arylation of Toluene Derivatives. Asian Journal of Organic Chemistry, 2017, 6, 669-672.	2.7	33
34	Synthesis of 2-Aryloxy-1,3-dienes from Phenols and Propargyl Carbonates. Journal of the American Chemical Society, 2019, 141, 84-88.	13.7	33
35	Aryl Ketones as Singleâ€Electronâ€Transfer Photoredox Catalysts in the Nickelâ€Catalyzed Homocoupling of Aryl Halides. European Journal of Organic Chemistry, 2016, 2016, 5822-5825.	2.4	31
36	Synthesis of Phenanthridinones and Phenanthridine Derivatives through Palladium-catalyzed Oxidative C–H Coupling of Benzanilides. Chemistry Letters, 2011, 40, 1047-1049.	1.3	30

#	Article	IF	CITATIONS
37	Enantioselective Construction of 3â€Hydroxypiperidine Scaffolds by Sequential Action of Light and Rhodium upon Nâ€Allylglyoxylamides. Angewandte Chemie - International Edition, 2015, 54, 7418-7421.	13.8	30
38	Photoinduced Specific Acylation of Phenolic Hydroxy Groups with Aldehydes. Angewandte Chemie - International Edition, 2020, 59, 18267-18271.	13.8	30
39	Palladium-Catalyzed Allylation Reaction of Alkynylborates. Bulletin of the Chemical Society of Japan, 2010, 83, 1380-1385.	3.2	27
40	Synthesis of \hat{I}^2 -Amino Acid Derivatives by Nickel(0)-mediated Sequential Addition of Carbon Dioxide and Dibenzoyldiazene onto Unsaturated Hydrocarbons. Chemistry Letters, 2007, 36, 476-477.	1.3	25
41	Pd-Catalyzed Ring-Closing/Ring-Opening Cross Coupling Reactions: Enantioselective Diarylation of Unactivated Olefins. ACS Catalysis, 2021, 11, 8942-8947.	11.2	23
42	Iterative Approach to Oligo(arylenevinylene)s Containing Tetrasubstituted Vinylene Units. Organic Letters, 2010, 12, 3179-3181.	4.6	22
43	Azulenophenanthrenes from 2,2′â€Di(arylethynyl)biphenyls through CC Bond Cleavage of a Benzene Ring. Angewandte Chemie - International Edition, 2013, 52, 6492-6495.	13.8	22
44	2â€Arylsilacyclobutane as a Latent Carbanion Reacting with CO ₂ . Angewandte Chemie - International Edition, 2018, 57, 11399-11403.	13.8	21
45	Sustainable System for Hydrogenation Exploiting Energy Derived from Solar Light. Journal of the American Chemical Society, 2021, 143, 2217-2220.	13.7	21
46	Planar chiral 2-(trifluoromethyl)quinoline-fused ferrocenes via palladium(0)-catalyzed C-H functionalization of trifluoroacetimidoyl chlorides. Green Synthesis and Catalysis, 2021, 2, 311-314.	6.8	21
47	Hydrosilylation-Metathesis Sequence Leading to 1-Silaindenes. Synlett, 2010, 2010, 2743-2746.	1.8	15
48	Construction of Indole Skeletons by Sequential Actions of Sunlight and Rhodium on \hat{l}_{\pm} -Aminoacetophenones. Chemistry Letters, 2013, 42, 1076-1078.	1.3	15
49	Synthesis of AzaaromaticBorane Intramolecular Complexes by Palladiumâ€Catalyzed Reaction of Azaaromatic Halides with Alkynyl(triaryl)borates. Helvetica Chimica Acta, 2012, 95, 2474-2480.	1.6	13
50	Site- and Regio-selective Incorporation of Carbon Dioxide into the C(sp ²)–Si Bond of Benzosilacyclobutenes. Chemistry Letters, 2018, 47, 570-572.	1.3	13
51	Synthetic Approach to Benzocyclobutenones Using Visible Light and a Phosphonate Auxiliary. Organic Letters, 2018, 20, 1224-1227.	4.6	12
52	Preparation of Ni(cod) ₂ Using Light as the Source of Energy. Organometallics, 2019, 38, 1413-1416.	2.3	12
53	Regioselective Construction of Indene Skeletons by Palladiumâ€Catalyzed Annulation of Alkynylborates with <i>o</i> i>â€lodophenyl Ketones. European Journal of Organic Chemistry, 2013, 2013, 1421-1424.	2.4	10
54	Azulenophenanthrenes from 2,2′â€Di(arylethynyl)biphenyls through CC Bond Cleavage of a Benzene Ring. Angewandte Chemie, 2013, 125, 6620-6623.	2.0	10

#	Article	IF	CITATIONS
55	Photo-assisted Fixation of CO ₂ onto Aryl Bromides Producing Aromatic Esters. Chemistry Letters, 2019, 48, 1316-1318.	1.3	10
56	Visible-Light-Driven Dehydrogenative Coupling of Primary Alcohols with Phenols Forming Aryl Carboxylates. Organic Letters, 2021, 23, 7683-7687.	4.6	10
57	Hydrogenolysis of 1-Alkoxybenzocyclobutenes with Site-selective Cleavage of the Sterically Hindered C(sp2)–C(sp3) Bond. Chemistry Letters, 2015, 44, 1521-1523.	1.3	9
58	2â€Arylsilacyclobutane as a Latent Carbanion Reacting with CO ₂ . Angewandte Chemie, 2018, 130, 11569-11573.	2.0	9
59	Light/Palladiumâ€Promoted Benzylic Câ^'H Acylation Using a Benzoyl Group as the Photoâ€Directing Group. Chemistry - an Asian Journal, 2019, 14, 403-406.	3.3	9
60	Reactions of Alkynylboron Compounds. Topics in Organometallic Chemistry, 2015, , 93-116.	0.7	6
61	Photoinduced Cyclization of (o â€Alkylbenzoyl)phosphonates to Benzocyclobutenols. Chemistry - an Asian Journal, 2017, 12, 1905-1908.	3.3	6
62	A shortcut to molecular complexity. Nature Chemistry, 2017, 9, 298-299.	13.6	6
63	A Strained Vicinal Diol as a Reductant for Coupling of Organyl Halides. Chemistry Letters, 2019, 48, 1042-1045.	1.3	6
64	Photoinduced Carbamoylation of C(sp ³)â€"H Bonds with Isocyanates. Chemistry Letters, 2021, 50, 1684-1687.	1.3	6
65	Photodriven Dehydrogenative Homocoupling of Benzylic C–H Bonds Forming Strained C–C Bonds. Synlett, 2021, 32, 2067-2070.	1.8	6
66	Photoinduced Direct Addition of Alkylarenes to Imines. Chemistry Letters, 2021, 50, 1972-1974.	1.3	6
67	Synthesis of Tofisopam by Way of Photoinduced CO2Fixation. Chemistry - an Asian Journal, 2019, 14, 4189-4192.	3.3	5
68	Photoinduced Specific Acylation of Phenolic Hydroxy Groups with Aldehydes. Angewandte Chemie, 2020, 132, 18424-18428.	2.0	5
69	Nickel-Catalyzed \hat{l}_{\pm} -1,3-Dienylation of 1,3-Dicarbonyl Compounds with Propargylic Carbonates. Synlett, 2021, 32, 1621-1624.	1.8	5
70	Synthesis of Acylphosphonates by a Palladiumâ€Catalyzed Phosphonocarbonylation Reaction of Aryl lodides with Phosphites. Chemistry - an Asian Journal, 2015, 10, 321-324.	3.3	4
71	Photoinduced Hydrophosphination of Terminal Alkynes with Tri(<i>o</i> -tolyl)phosphine: Synthesis of Alkenylphosphonium Salts. Organic Letters, 2022, 24, 2504-2508.	4.6	4
72	Acceleration of Inward Ring Opening of 3â€Phosphorylcyclobutenes. Asian Journal of Organic Chemistry, 2017, 6, 174-176.	2.7	3

NAOKI ISHIDA

#	Article	lF	CITATIONS
73	Development of New Synthetic Methods Based upon Carbon-Carbon Bond Activation. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 29-38.	0.1	3
74	Thermal Metathesis of C–C Single Bonds Induced by Steric Frustration. Chemistry Letters, 2022, 51, 771-774.	1.3	1
75	Asymmetric Carroll Rearrangement of Allyl \hat{l} ±-Acetamido- \hat{l} ²-ketocarboxylates Catalyzed by a Chiral Palladium Complex ChemInform, 2005, 36, no.	0.0	O
76	Synthesis of Tetraarylphosphonium Salts from Triarylphosphines and Aryl Bromides Exploiting Light and Palladium. Chemistry Letters, 2022, 51, 522-524.	1.3	0
77	Dehydrogenative Three-component Coupling of CO with Methylarenes Forming Dibenzyl Ketones. Chemistry Letters, 2022, 51, 765-767.	1.3	0