
Roberto Di Maio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8216117/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson's disease. Science Translational Medicine, 2016, 8, 342ra78.	12.4	432
2	LRRK2 activation in idiopathic Parkinson's disease. Science Translational Medicine, 2018, 10, .	12.4	363
3	Nongenomic glucocorticoid receptor action regulates gap junction intercellular communication and neural progenitor cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16657-16662.	7.1	102
4	Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation. Organogenesis, 2014, 10, 365-377.	1.2	96
5	Pilocapine alters NMDA receptor expression and function in hippocampal neurons: NADPH oxidase and ERK1/2 mechanisms. Neurobiology of Disease, 2011, 42, 482-495.	4.4	82
6	LRRK2 inhibition prevents endolysosomal deficits seen in human Parkinson's disease. Neurobiology of Disease, 2020, 134, 104626.	4.4	73
7	Cyclopentenone prostaglandin-induced unfolding and aggregation of the Parkinson disease-associated UCH-L1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6835-6840.	7.1	70
8	Single-Cell Redox Imaging Demonstrates a Distinctive Response of Dopaminergic Neurons to Oxidative Insults. Antioxidants and Redox Signaling, 2011, 15, 855-871.	5.4	70
9	Human Induced Pluripotent Stem Cell-Derived Models to Investigate Human Cytomegalovirus Infection in Neural Cells. PLoS ONE, 2012, 7, e49700.	2.5	69
10	DJ-1 Expression Modulates Astrocyte-Mediated Protection Against Neuronal Oxidative Stress. Journal of Molecular Neuroscience, 2013, 49, 507-511.	2.3	63
11	LRRK2 and idiopathic Parkinson's disease. Trends in Neurosciences, 2022, 45, 224-236.	8.6	53
12	Thiol oxidation and altered NR2B/NMDA receptor functions in in vitro and in vivo pilocarpine models: Implications for epileptogenesis. Neurobiology of Disease, 2013, 49, 87-98.	4.4	43
13	Behavioral, neurochemical, and pathologic alterations in bacterial artificial chromosome transgenic G2019S leucine-rich repeated kinase 2 rats. Neurobiology of Aging, 2015, 36, 505-518.	3.1	42
14	Post-status epilepticus treatment with the cannabinoid agonist WIN 55,212-2 prevents chronic epileptic hippocampal damage in rats. Neurobiology of Disease, 2015, 73, 356-365.	4.4	37
15	Generation of three-dimensional human neuronal cultures: application to modeling CNS viral infections. Stem Cell Research and Therapy, 2018, 9, 134.	5.5	36
16	Synergistic action of CB1 and 5-HT2B receptors in preventing pilocarpine-induced status epilepticus in rats. Neurobiology of Disease, 2019, 125, 135-145.	4.4	26
17	α-Synuclein amplifies cytoplasmic peroxide flux and oxidative stress provoked by mitochondrial inhibitors in CNS dopaminergic neurons in vivo. Redox Biology, 2020, 37, 101695.	9.0	26
18	Mouse ES cells overexpressing DNMT1 produce abnormal neurons with upregulated NMDA/NR1 subunit. Differentiation. 2011. 82. 9-17.	1.9	19

ROBERTO DI MAIO

#	Article	IF	CITATIONS
19	Preferential modulation of the lateral habenula activity by serotoninâ€2A rather than â€2C receptors: Electrophysiological and neuroanatomical evidence. CNS Neuroscience and Therapeutics, 2018, 24, 721-733.	3.9	19
20	Redox Sensitivity of Tyrosine Hydroxylase Activity and Expression in Dopaminergic Dysfunction. CNS and Neurological Disorders - Drug Targets, 2012, 11, 419-429.	1.4	19
21	NADPH oxidase 2 activity in Parkinson's disease. Neurobiology of Disease, 2022, 170, 105754.	4.4	18
22	Zn ²⁺ â€induced Ca ²⁺ release via ryanodine receptors triggers calcineurinâ€dependent redistribution of cortical neuronal Kv2.1 K ⁺ channels. Journal of Physiology, 2016, 594, 2647-2659.	2.9	16
23	WIN 55,212-2 Reverted Pilocarpine-Induced Status Epilepticus Early Changes of the Interaction among 5-HT _{2C} /NMDA/CB ₁ Receptors in the Rat Hippocampus. ACS Chemical Neuroscience, 2019, 10, 3296-3306.	3.5	15
24	Neuronal mechanisms of epileptogenesis. Frontiers in Cellular Neuroscience, 2014, 8, 29.	3.7	13
25	5-HT2 receptors-mediated modulation of voltage-gated K+ channels and neurophysiopathological correlates. Experimental Brain Research, 2013, 230, 453-462.	1.5	12
26	Selective Fatty Acid Amide Hydrolase Inhibitors as Potential Novel Antiepileptic Agents. ACS Chemical Neuroscience, 2021, 12, 1716-1736.	3.5	12
27	Transient muscarinic and glutamatergic stimulation of neural stem cells triggers acute and persistent changes in differentiation. Neurobiology of Disease, 2014, 70, 252-261.	4.4	10
28	Measurement of LRRK2 Kinase Activity by Proximity Ligation Assay. Bio-protocol, 2021, 11, e4140.	0.4	6
29	CCK–nitric oxide interaction in rat cortex, striatum and pallidum. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2003, 135, 425-433.	2.6	1