List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8216078/publications.pdf Version: 2024-02-01

IAROD PAREAH

#	Article	IF	CITATIONS
1	Nanoscale Fe ₂ O ₃ -Based Catalysts for Selective Hydrogenation of Nitroarenes to Anilines. Science, 2013, 342, 1073-1076.	6.0	868
2	Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nature Chemistry, 2013, 5, 537-543.	6.6	633
3	Protonated Imineâ€Linked Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 19797-19803.	7.2	171
4	Efficient VO _{<i>x</i>} /Ce _{1–<i>x</i>} Ti _{<i>x</i>} O ₂ Catalysts for Low-Temperature NH ₃ -SCR: Reaction Mechanism and Active Sites Assessed by in Situ/Operando Spectroscopy. ACS Catalysis, 2017, 7, 1693-1705.	5.5	167
5	Cobalt Singleâ€Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid. Angewandte Chemie - International Edition, 2020, 59, 15849-15854.	7.2	156
6	Fast Electron Transfer and [•] OH Formation: Key Features for High Activity in Visible-Light-Driven Ozonation with C ₃ N ₄ Catalysts. ACS Catalysis, 2017, 7, 6198-6206.	5.5	135
7	In situ formation of ZnOx species for efficient propane dehydrogenation. Nature, 2021, 599, 234-238.	13.7	133
8	Palladium atalyzed Trifluoromethylation of (Hetero)Arenes with CF ₃ Br. Angewandte Chemie - International Edition, 2016, 55, 2782-2786.	7.2	119
9	Encapsulation of Ru nanoparticles: Modifying the reactivity toward CO and CO2 methanation on highly active Ru/TiO2 catalysts. Applied Catalysis B: Environmental, 2020, 270, 118846.	10.8	84
10	Visible-Light Photocatalytic Ozonation Using Graphitic C ₃ N ₄ Catalysts: A Hydroxyl Radical Manufacturer for Wastewater Treatment. Accounts of Chemical Research, 2020, 53, 1024-1033.	7.6	81
11	Heterogeneous Platinumâ€Catalyzed CH Perfluoroalkylation of Arenes and Heteroarenes. Angewandte Chemie - International Edition, 2015, 54, 4320-4324.	7.2	80
12	Ni–In Synergy in CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2021, 11, 11371-11384.	5.5	79
13	Formation, Operation and Deactivation of Cr Catalysts in Ethylene Tetramerization Directly Assessed by Operando EPR and XAS. ACS Catalysis, 2013, 3, 95-102.	5.5	74
14	Selective Alcohol Oxidation by a Copper TEMPO Catalyst: Mechanistic Insights by Simultaneously Coupled Operando EPR/UVâ€Vis/ATRâ€IR Spectroscopy. Angewandte Chemie - International Edition, 2015, 54, 11791-11794.	7.2	71
15	Improving Selectivity and Activity of CO2 Reduction Photocatalysts with Oxygen. CheM, 2019, 5, 1818-1833.	5.8	69
16	Monitoring Structure and Valence State of Chromium Sites during Catalyst Formation and Ethylene Oligomerization by in Situ EPR Spectroscopy. Organometallics, 2008, 27, 3849-3856.	1.1	67
17	Simultaneously Tuning the Defects and Surface Properties of Ta ₃ N ₅ Nanoparticles by Mg–Zr Codoping for Significantly Accelerated Photocatalytic H ₂ Evolution. Journal of the American Chemical Society, 2021, 143, 10059-10064.	6.6	62
18	Gallic Acid-Promoted SET Process for Cyclobutanone Oximes Activation and (Carbonylative-)Alkylation of Olefins. ACS Catalysis, 2018, 8, 10926-10930.	5.5	60

#	Article	IF	CITATIONS
19	The role of ozone and influence of band structure in WO3 photocatalysis and ozone integrated process for pharmaceutical wastewater treatment. Journal of Hazardous Materials, 2018, 360, 481-489.	6.5	60
20	Scalable and selective deuteration of (hetero)arenes. Nature Chemistry, 2022, 14, 334-341.	6.6	56
21	Controlling the O-Vacancy Formation and Performance of Au/ZnO Catalysts in CO ₂ Reduction to Methanol by the ZnO Particle Size. ACS Catalysis, 2021, 11, 9022-9033.	5.5	53
22	Unraveling the Origins of the Synergy Effect between ZrO ₂ and CrO <i>_x</i> in Supported CrZrO <i>_x</i> for Propene Formation in Nonoxidative Propane Dehydrogenation. ACS Catalysis, 2020, 10, 1575-1590.	5.5	46
23	Electronic metal-support interactions and their promotional effect on CO2 methanation on Ru/ZrO2 catalysts. Journal of Catalysis, 2021, 400, 407-420.	3.1	44
24	Origins of high catalyst loading in copper(<scp>i</scp>)-catalysed Ullmann–Goldberg C–N coupling reactions. Chemical Science, 2017, 8, 7203-7210.	3.7	42
25	Palladium atalyzed Trifluoromethylation of (Hetero)Arenes with CF ₃ Br. Angewandte Chemie, 2016, 128, 2832-2836.	1.6	40
26	Tiny Species with Big Impact: High Activity of Cu Single Atoms on CeO ₂ –TiO ₂ Deciphered by <i>Operando</i> Spectroscopy. ACS Catalysis, 2021, 11, 10933-10949.	5.5	39
27	Sustainable Coâ€Synthesis of Clycolic Acid, Formamides and Formates from 1,3â€Dihydroxyacetone by a Cu/Al ₂ O ₃ Catalyst with a Single Active Sites. Angewandte Chemie - International Edition, 2019, 58, 5251-5255.	7.2	38
28	Tracing Active Sites in Supported Ni Catalysts during Butene Oligomerization by <i>Operando</i> Spectroscopy under Pressure. ACS Catalysis, 2016, 6, 8224-8228.	5.5	37
29	A "universal―catalyst for aerobic oxidations to synthesize (hetero)aromatic aldehydes, ketones, esters, acids, nitriles, and amides. CheM, 2022, 8, 508-531.	5.8	37
30	Colloidal Manganese-Doped ZnS Nanoplatelets and Their Optical Properties. Chemistry of Materials, 2021, 33, 275-284.	3.2	36
31	Benzothiazole-Linked Metal-Free Covalent Organic Framework Nanostructures for Visible-Light-Driven Photocatalytic Conversion of Phenylboronic Acids to Phenols. ACS Applied Nano Materials, 2021, 4, 11732-11742.	2.4	35
32	Practical and General Manganeseâ€Catalyzed Carbonylative Coupling of Alkyl Iodides with Amides. ChemCatChem, 2017, 9, 915-919.	1.8	34
33	A selective route to aryl-triphosphiranes and their titanocene-induced fragmentation. Chemical Science, 2019, 10, 7859-7867.	3.7	34
34	Vinylboron Self-Promoted Carbonylative Coupling with Cyclobutanone Oxime Esters. Organic Letters, 2019, 21, 1766-1769.	2.4	33
35	Controlling activity and selectivity of bare ZrO2 in non-oxidative propane dehydrogenation. Applied Catalysis A: General, 2019, 585, 117189.	2.2	32
36	Number of Reactive Charge Carriers—A Hidden Linker between Band Structure and Catalytic Performance in Photocatalysts. ACS Catalysis, 2019, 9, 8852-8861.	5.5	31

#	Article	IF	CITATIONS
37	Practical Catalytic Cleavage of C(sp ³)â^'C(sp ³) Bonds in Amines. Angewandte Chemie - International Edition, 2019, 58, 10693-10697.	7.2	31
38	From sunflower oil toward 1,19-diester: Mechanistic elucidation. Journal of Catalysis, 2013, 297, 44-55.	3.1	26
39	Effect of Formaldehyde in Selective Catalytic Reduction of NO <i>_x</i> by Ammonia (NH ₃ -SCR) on a Commercial V ₂ O ₅ -WO ₃ /TiO ₂ Catalyst under Model Conditions. Environmental Science &: Technology, 2020, 54, 11753-11761.	4.6	26
40	Steering the selectivity in CO2 reduction on highly active Ru/TiO2 catalysts: Support particle size effects. Journal of Catalysis, 2021, 401, 160-173.	3.1	25
41	Synergistic effect of VOx and MnOx surface species for improved performance of V2O5/Ce0.5Ti0.5â^'xMnxO2â^'δ catalysts in low-temperature NH3-SCR of NO. Catalysis Science and Technology, 2018, 8, 6360-6374.	2.1	24
42	The effect of ZrO2 crystallinity in CrZrOx/SiO2 on non-oxidative propane dehydrogenation. Applied Catalysis A: General, 2020, 590, 117350.	2.2	21
43	Ligand electronic fine-tuning and its repercussion on the photocatalytic activity and mechanistic pathways of the copper-photocatalysed aza-Henry reaction. Catalysis Science and Technology, 2020, 10, 7745-7756.	2.1	21
44	Effects of Imidazole-Type Ligands in Cu ^I /TEMPO-Mediated Aerobic Alcohol Oxidation. Inorganic Chemistry, 2017, 56, 684-691.	1.9	20
45	A general and practical Ni-catalyzed C–H perfluoroalkylation of (hetero)arenes. Chemical Communications, 2019, 55, 6723-6726.	2.2	20
46	Impact of Al Activators on Structure and Catalytic Performance of Cr Catalysts in Homogeneous Ethylene Oligomerization – A Multitechnique <i>in situ/operando</i> Study. ChemCatChem, 2020, 12, 1025-1035.	1.8	20
47	In-situ experimental and computational approach to investigate the nature of active site in low-temperature CO-PROX over CuOx-CeO2 catalyst. Applied Catalysis A: General, 2021, 624, 118305.	2.2	20
48	Effects of N ₂ O and Water on Activity and Selectivity in the Oxidative Coupling of Methane over Mn–Na ₂ WO ₄ /SiO ₂ : Role of Oxygen Species. ACS Catalysis, 2022, 12, 1298-1309.	5.5	20
49	Unexpected Reactions of [Ag(NCCH ₃) ₃][(V ₂ O ₃) ₂ (RPO ₃) Cage Compounds with H ₂ and NO. Angewandte Chemie - International Edition, 2007, 46, 6354-6356.	sub>47.2	ub>âŠ,F] 19
50	Glycerol as a Building Block for Prochiral Aminoketone, <i>N</i> â€Formamide, and <i>N</i> â€Methyl Amine Synthesis. ChemSusChem, 2016, 9, 3133-3138.	3.6	19
51	Ta and Mo oxides supported on CeO2-TiO2 for the selective catalytic reduction of NOx with NH3 at low temperature. Journal of Catalysis, 2021, 395, 325-339.	3.1	19
52	In Situ EPR Study of Chemical Reactions in Q-Band at Higher Temperatures: A Challenge for Elucidating Structureâ^'Reactivity Relationships in Catalysis. Journal of the American Chemical Society, 2010, 132, 9873-9880.	6.6	18
53	New Directions in the Preparation and Redox Chemistry of Fluoride-Templated Tetranuclear Vanadium Phosphonate Cage Compounds, Mn+[(V2O3)2(RPO3)4âŠ,F]n. Inorganic Chemistry, 2008, 47, 9293-9302.	1.9	16
54	Understanding trends in methane oxidation to formaldehyde: statistical analysis of literature data and based hereon experiments. Catalysis Science and Technology, 2019, 9, 5111-5121.	2.1	16

#	Article	IF	CITATIONS
55	Multivariate Analysis of Coupled Operando EPR/XANES/EXAFS/UV–Vis/ATRâ€IR Spectroscopy: A New Dimension for Mechanistic Studies of Catalytic Gasâ€Liquid Phase Reactions. Chemistry - A European Journal, 2020, 26, 7395-7404.	1.7	15
56	Rationalizing the Effect of Triethylaluminum on the Cr/SiO ₂ Phillips Catalysts. ACS Catalysis, 2020, 10, 2694-2706.	5.5	15
57	Pyrimidopteridine-Catalyzed Hydroamination of Stilbenes with Primary Amines: A Dual Photoredox and Hydrogen Atom Transfer Catalyst. ACS Catalysis, 2021, 11, 4862-4869.	5.5	15
58	Catalytic Desaturation of Aliphatic Amides and Imides Enabled by Excited-State Base-Metal Catalysis. ACS Catalysis, 2022, 12, 8868-8876.	5.5	15
59	Selective nickel-catalyzed fluoroalkylations of olefins. Chemical Communications, 2020, 56, 15157-15160.	2.2	13
60	Cobalt Singleâ€Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid. Angewandte Chemie, 2020, 132, 15983-15988.	1.6	13
61	Visibleâ€Lightâ€Induced Palladiumâ€Catalyzed Dehydrogenative Carbonylation of Amines to Oxalamides. Chemistry - A European Journal, 2021, 27, 5642-5647.	1.7	13
62	Dihydroxyacetone valorization with high atom efficiency via controlling radical oxidation pathways over natural mineral-inspired catalyst. Nature Communications, 2021, 12, 6840.	5.8	13
63	Rhodium-catalyzed carbonylative coupling of alkyl halides with thiols: a radical process faster than easier nucleophilic substitution. Chemical Communications, 2021, 57, 1466-1469.	2.2	12
64	From the Precursor to the Active State: Monitoring Metamorphosis of Electrocatalysts During Water Oxidation by <i>In Situ</i> Spectroscopy. ChemElectroChem, 2017, 4, 2117-2122.	1.7	11
65	Ruthenium(III)/phosphine/pyridine complexes applied in the hydrogenation reactions of polar and apolar double bonds. Journal of Molecular Structure, 2016, 1111, 84-89.	1.8	10
66	Relations between Structure, Activity and Stability in C3N4 Based Photocatalysts Used for Solar Hydrogen Production. Catalysts, 2018, 8, 52.	1.6	10
67	Effect of metal ion addition on structural characteristics and photocatalytic activity of ordered mesoporous titania. Journal of Sol-Gel Science and Technology, 2019, 91, 539-551.	1.1	10
68	Role of Surface Acidity in Formation and Performance of Active Ni Single Sites in Supported Catalysts for Butene Dimerization: A View inside by <i>Operando</i> EPR and <i>In Situ</i> FTIR Spectroscopy. ACS Catalysis, 2021, 11, 3541-3552.	5.5	10
69	Supported Cu ^{II} Singleâ€Ion Catalyst for Total Carbon Utilization of C ₂ and C ₃ Biomassâ€Based Platform Molecules in the Nâ€Formylation of Amines. Chemistry - A European Journal, 2021, 27, 16889-16895.	1.7	10
70	Oxygen vacancies in Ru/TiO2 - drivers of low-temperature CO2 methanation assessed by multimodal operando spectroscopy. IScience, 2022, 25, 103886.	1.9	10
71	Tuning the Electronic and Spin Complexity in Organic–Inorganic Molecular Hybrid Compounds. Chemistry - A European Journal, 2012, 18, 6433-6436	1.7	9
72	Synergetic Bimetallic Oxidative Esterification of 5-Hydroxymethylfurfural under Mild Conditions. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	9

#	Article	IF	CITATIONS
73	Radical Reactivity of the Biradical [â <p(μâ€nter)<sub>2Pâ<] and Isolation of a Persistent Phosphorusâ€Cantered Monoradical [â<p(μâ€nter)<sub>2Pâ€Et]. Chemistry - A European Journal, 2022</p(μâ€nter)<sub></p(μâ€nter)<sub>	2,128,	9
74	Fluorescent Hybrid Porous Polymers as Sustainable Heterogeneous Photocatalysts for Cross-Dehydrogenative Coupling Reactions. ACS Applied Materials & Interfaces, 2021, 13, 42889-42897.	4.0	8
75	Role of Magnetic Coupling in Photoluminescence Kinetics of Mn ²⁺ -Doped ZnS Nanoplatelets. ACS Applied Materials & Interfaces, 2022, 14, 18806-18815.	4.0	8
76	Impact of dopants on catalysts containing Ce1-xMxO2-δ (MÂ=ÂFe, Sb or Bi) in NH3-SCR of NOx – A multiple spectroscopic approach. Journal of Catalysis, 2022, 408, 453-464.	3.1	7
77	Controlling the selectivity of high-surface-area Ru/TiO2 catalysts in CO2 reduction - modifying the reaction properties by Si doping of the support. Applied Catalysis B: Environmental, 2022, 317, 121748.	10.8	7
78	Control of Bridging Ligands in [(V2O3)2(RXO3)4àŠ,F]à^' Cage Complexes: A Unique Way To Tune Their Chemical Properties. Organometallics, 2014, 33, 4905-4910.	1.1	6
79	Metal/Metal Redox Isomerism Governed by Configuration. Chemistry - A European Journal, 2020, 26, 16811-16817.	1.7	6
80	The Effect of Iron and Vanadium in VO y /Ce 1â€x Fe x O 2â€Î´ Catalysts in Lowâ€Temperature Selective Catalytic Reduction of NO x by Ammonia. ChemCatChem, 2020, 12, 2440-2451.	1.8	5
81	Enhanced photocatalytic performance of polymeric carbon nitride through combination of iron loading and hydrogen peroxide treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124383.	2.3	5
82	Catalytic and mechanistic studies of a highly active and <i>E</i> -selective Co(<scp>ii</scp>) PNN ^H pincer catalyst system for transfer-semihydrogenation of internal alkynes. Inorganic Chemistry Frontiers, 2022, 9, 761-770.	3.0	5
83	Localization and Delocalization of Spin Density in Mixed-Valence (VIV/VV) [(V2O3)2(PhPO3)4âŠ,F]–n (n = 1,) Tj 3582-3593.	ETQq1 1 1.0	0.784314 4
84	Dye activation of heterogeneous Copper(II)-Species for visible light driven hydrogen generation. International Journal of Hydrogen Energy, 2019, 44, 28409-28420.	3.8	4
85	Facile Synthesis of a Stable Sideâ€on Phosphinyne Complex by Redox Driven Intramolecular Cyclisation. Chemistry - A European Journal, 2020, 26, 11492-11502.	1.7	3
86	Role of V and W Sites in V2O5â€WO3/TiO2 Catalysts and Effect of Formaldehyde during NH3‧CR of NOx. ChemCatChem, 0, , .	1.8	1
87	Impact of Al Activators on Structure and Catalytic Performance of Cr Catalysts in Homogeneous Ethylene Oligomerization – A Multitechnique in situ/operando Study. ChemCatChem, 2020, 12, 964-964.	1.8	0
88	A Persistent Phosphanylâ \in Substituted Thioketyl Radical Anion. Angewandte Chemie, O, , .	1.6	0