Zhiwei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8215958/publications.pdf

Version: 2024-02-01

315616 331538 1,507 46 21 citations h-index papers

g-index 46 46 46 1458 docs citations citing authors all docs times ranked

38

#	Article	IF	CITATIONS
1	Flame retardant coatings prepared using layer by layer assembly: A review. Chemical Engineering Journal, 2018, 334, 108-122.	6.6	281
2	Graphene-based flame retardants: a review. Journal of Materials Science, 2016, 51, 8271-8295.	1.7	169
3	Zinc ferrite nanoparticle decorated boron nitride nanosheet: Preparation, magnetic field arrangement, and flame retardancy. Chemical Engineering Journal, 2019, 356, 680-692.	6.6	90
4	An overview of fire retardant treatments for synthetic textiles: From traditional approaches to recent applications. European Polymer Journal, 2020, 137, 109911.	2.6	76
5	Flame retardant treatments for polypropylene: Strategies and recent advances. Composites Part A: Applied Science and Manufacturing, 2021, 145, 106382.	3.8	76
6	Layer-by-layer-assembled flame-retardant coatings from polydopamine-induced in situ functionalized and reduced graphene oxide. Journal of Materials Science, 2019, 54, 13848-13862.	1.7	45
7	Preparation of lanthanum trifluoride nanoparticles surface-capped by tributyl phosphate and evaluation of their tribological properties as lubricant additive in liquid paraffin. Applied Surface Science, 2014, 292, 971-977.	3.1	44
8	Preparation of zinc hydroxystannate-decorated graphene oxide nanohybrids and their synergistic reinforcement on reducing fire hazards of flexible poly (vinyl chloride). Nanoscale Research Letters, 2016, 11, 192.	3.1	44
9	Preparation and tribological properties of fluorosilane surface-modified lanthanum trifluoride nanoparticles as additive of fluoro silicone oil. Applied Surface Science, 2014, 316, 515-523.	3.1	40
10	Preparation of surfaceâ€"modified lanthanum fluorideâ€"graphene oxide nanohybrids and evaluation of their tribological properties as lubricant additive in liquid paraffin. Applied Surface Science, 2016, 388, 497-502.	3.1	40
11	Preparation of In2S3 nanopraricle by ultrasonic dispersion and its tribology property. Ultrasonics Sonochemistry, 2009, 16, 221-224.	3.8	38
12	Polyvinyl alcohol composite aerogel with remarkable flame retardancy, chemical durability and self-cleaning property. Composites Communications, 2019, 15, 96-102.	3.3	38
13	A novel route to prepare and characterize Sn–Bi nanoparticles. Journal of Alloys and Compounds, 2005, 394, 282-285.	2.8	36
14	Preparation and Tribological Properties of Lanthanum Trifluoride Nanoparticles-Decorated Graphene Oxide Nanosheets. Industrial & Engineering Chemistry Research, 2015, 54, 4773-4780.	1.8	36
15	Graphene oxide functionalized biomolecules for improved flame retardancy of Polyamide 66 fabrics with intact physical properties. International Journal of Biological Macromolecules, 2020, 156, 362-371.	3.6	36
16	A simple and rapid method for preparing indium nanoparticles from bulk indium via ultrasound irradiation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 407, 7-10.	2.6	33
17	A facile way for preparing tin nanoparticles from bulk tin via ultrasound dispersion. Ultrasonics Sonochemistry, 2007, 14, 89-92.	3.8	33
18	Bismuth oxychloride nanosheets for improvement of flexible poly (vinyl chloride) flame retardancy. Journal of Materials Science, 2020, 55, 631-643.	1.7	26

#	Article	IF	CITATIONS
19	Mesoporous Zinc Ferrite Microsphere-Decorated Graphene Oxide as a Flame Retardant Additive: Preparation, Characterization, and Flame Retardance Evaluation. Industrial & Engineering Chemistry Research, 2017, 56, 7720-7729.	1.8	25
20	Titanate Nanotubes Decorated Graphene Oxide Nanocomposites: Preparation, Flame Retardancy, and Photodegradation. Nanoscale Research Letters, 2017, 12, 441.	3.1	24
21	Construction and flameâ€retardant performance of layerâ€byâ€layer assembled hexagonal boron nitride coatings on flexible polyurethane foams. Journal of Applied Polymer Science, 2019, 136, 47839.	1.3	23
22	Preparation of zinc hydroxystannate-titanate nanotube flame retardant and evaluation its smoke suppression efficiency for flexible polyvinyl chloride matrix. Materials Letters, 2017, 204, 133-137.	1.3	22
23	Preparation of Cobalt Ferrite Nanoparticle-Decorated Boron Nitride Nanosheet Flame Retardant and Its Flame Retardancy in Epoxy Resin. Nano, 2019, 14, 1950063.	0.5	22
24	A simple and universal strategy for construction and application of silica-based flame-retardant nanostructure. Composites Part B: Engineering, 2022, 238, 109887.	5.9	21
25	Side-by-Side In(OH)3 and In2O3 Nanotubes: Synthesis and Optical Properties. Nanoscale Research Letters, 2010, 5, 383-388.	3.1	19
26	Biomass Chitosan-Induced Fe ₃ O ₄ Functionalized Halloysite Nanotube Composites: Preparation, Characterization and Flame-Retardant Performance. Nano, 2019, 14, 1950154.	0.5	19
27	Boron nitride nanosheets decorated by bismuth ferrite particles: preparation, characterization, and effect on flame-retardant performance of epoxy resin. Materials Research Express, 2018, 5, 095019.	0.8	17
28	Ultrasound-assisted bottom-up synthesis of Ni-graphene hybrid composites and their excellent rhodamine B removal properties. Journal of Environmental Management, 2020, 255, 109834.	3.8	15
29	Preparation of novel biomass humate flame retardants and their flame retardancy in epoxy resin. Journal of Applied Polymer Science, 2020, 137, 49601.	1.3	14
30	Improvement in fire-retardant properties of polypropylene filled with intumescent flame retardants, using flower-like nickel cobaltate as synergist. Journal of Materials Science, 2021, 56, 2702-2716.	1.7	14
31	Modifying Epoxy Resins to Resist Both Fire and Water. Langmuir, 2019, 35, 14332-14338.	1.6	12
32	Effect of coreâ€"shell zinc hydroxystannate nanoparticleâ€"organic macromolecule composite flame retardant prepared by masterbatch method on flameâ€retardant behavior and mechanical properties of flexible poly(vinyl chloride). Polymer Engineering and Science, 2014, 54, 1983-1989.	1.5	10
33	Ultralow temperature synthesis and improved adsorption performance of graphene oxide nanosheets. Applied Surface Science, 2015, 324, 363-368.	3.1	10
34	Flame Retardancy and Mechanical Properties of a Novel Zinc Hydroxystannate/Epoxy Resin Nanocomposite. Journal of Nanoscience and Nanotechnology, 2017, 17, 8856-8863.	0.9	9
35	Nonfluoride-modified halloysite nanotube-based hybrid: potential for acquiring super-hydrophobicity and improving flame retardancy of epoxy resin. Journal of Nanostructure in Chemistry, 2021, 11, 353-366.	5.3	9
36	Preparation of mesoporous zinc ferrite flame retardant with different scales and its performance in epoxy resin. Polymer Testing, 2022, 110, 107549.	2.3	9

ZHIWEI LI

#	Article	IF	CITATIONS
37	Fabrication of Bismuth Oxychloride Nanosheets Decorated with Chitosan and Phytic Acid for Improvement of Flexible Poly(vinyl chloride) Flame Retardancy. Fibers and Polymers, 2021, 22, 2656-2663.	1.1	8
38	Enhancing flame retardance of epoxy resin by incorporation into ammonium polyphosphate/boron nitride nanosheets/zinc ferrite threeâ€dimensional porous aerogel via vacuumâ€assisted infiltration. Journal of Applied Polymer Science, 2020, 137, 48609.	1.3	7
39	Superior flame retardancy and smoke suppression of poly (vinyl chloride) composites with iron/tinâ€doped bismuth oxychloride. Journal of Applied Polymer Science, 2022, 139, .	1.3	5
40	Selfâ€assembly of carboxyl functionalized polystyrene nanoâ€spheres into closeâ€packed monolayers via chemical adsorption. Chinese Journal of Chemistry, 2004, 22, 1133-1137.	2.6	4
41	Reutilization of melamineâ€formaldehyde foam wastes: Removing Sn ²⁺ in simulated tinâ€containing wastewater to transform a fire hazard suppressant of flexible poly(vinyl chloride). Journal of Applied Polymer Science, 2022, 139, 51724.	1.3	4
42	Flame Retardant Treatments of Nylon Textiles: A Shift towards Eco-Friendly Approaches. , 0, , .		3
43	Facile One-Pot Bottom–Up Synthesis of Graphene and Ni/Graphene Nanostructures and Their Excellent Adsorption Performances. Nano, 2018, 13, 1850021.	0.5	1
44	Controllable synthesis and characterization of porous Zn/Cu composite hollow microspheres via a template-free route. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	0
45	A universal route for synthesizing nearly monodisperse MxOy (M=Zn, In, Co, Fe) nanocrystals. Materials Science in Semiconductor Processing, 2014, 24, 132-137.	1.9	O
46	Platinum-doped titanate nanotubes/reduced graphene oxide: photocatalytic activity and flame retardancy. Materials Research Express, 2018, 5, 015018.	0.8	0