
Kurt J De Vos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8215857/publications.pdf Version: 2024-02-01

KUDT I DE VOS

#	Article	IF	CITATIONS
1	<i>C9ORF72</i> -derived poly-GA DPRs undergo endocytic uptake in iAstrocytes and spread to motor neurons. Life Science Alliance, 2022, 5, e202101276.	1.3	6
2	Astrocyte adenosine deaminase loss increases motor neuron toxicity in amyotrophic lateral sclerosis. Brain, 2019, 142, 586-605.	3.7	84
3	The role of mitochondria in amyotrophic lateral sclerosis. Neuroscience Letters, 2019, 710, 132933.	1.0	356
4	C9orf72 plays a central role in Rab GTPase-dependent regulation of autophagy. Small GTPases, 2018, 9, 399-408.	0.7	45
5	Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research?. Neurobiology of Disease, 2017, 105, 283-299.	2.1	173
6	C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nature Neuroscience, 2017, 20, 1225-1235.	7.1	138
7	SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nature Communications, 2017, 8, 16063.	5.8	106
8	Amyotrophic lateral sclerosis-associated mutant SOD1 inhibits anterograde axonal transport of mitochondria by reducing Miro1 levels. Human Molecular Genetics, 2017, 26, 4668-4679.	1.4	83
9	Protein Homeostasis in Amyotrophic Lateral Sclerosis: Therapeutic Opportunities?. Frontiers in Molecular Neuroscience, 2017, 10, 123.	1.4	62
10	C9ORF72 hexanucleotide repeat exerts toxicity in a stable, inducible motor neuronal cell model, which is rescued by partial depletion of Pten. Human Molecular Genetics, 2017, 26, 1133-1145.	1.4	23
11	The C9orf72 protein interacts with Rab1a and the <scp>ULK</scp> 1 complex to regulate initiation of autophagy. EMBO Journal, 2016, 35, 1656-1676.	3.5	327
12	<scp>ALS</scp> / <scp>FTD</scp> â€associated <scp>FUS</scp> activates <scp>GSK</scp> â€3β to disrupt the <scp>VAPB</scp> – <scp>PTPIP</scp> 51 interaction and <scp>ER</scp> –mitochondria associations. EMBO Reports, 2016, 17, 1326-1342.	2.0	201
13	Reduced number of axonal mitochondria and tau hypophosphorylation in mouse P301L tau knockin neurons. Neurobiology of Disease, 2016, 85, 1-10.	2.1	57
14	ER–mitochondria associations are regulated by the VAPB–PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nature Communications, 2014, 5, 3996.	5.8	463
15	Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nature Communications, 2014, 5, 5245.	5.8	229
16	Axonal Transport Defects in a Mitofusin 2 Loss of Function Model of Charcot-Marie-Tooth Disease in Zebrafish. PLoS ONE, 2013, 8, e67276.	1.1	55
17	Amyotrophic lateral sclerosis-associated mutant VAPBP56S perturbs calcium homeostasis to disrupt axonal transport of mitochondria. Human Molecular Genetics, 2012, 21, 1979-1988.	1.4	112
18	VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Human Molecular Genetics, 2012, 21, 1299-1311.	1.4	423

Kurt J De Vos

#	Article	IF	CITATIONS
19	Lemur tyrosine kinase-2 signalling regulates kinesin-1 light chain-2 phosphorylation and binding of Smad2 cargo. Oncogene, 2012, 31, 2773-2782.	2.6	44
20	A comparison of in vitro properties of resting SOD1 transgenic microglia reveals evidence of reduced neuroprotective function. BMC Neuroscience, 2011, 12, 91.	0.8	19
21	Phosphorylation of kinesin light chain 1 at serine 460 modulates binding and trafficking of calsyntenin-1. Journal of Cell Science, 2011, 124, 1032-1042.	1.2	55
22	A14â€Fast axonal transport of mitochondria is altered in Huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, A5.1-A5.	0.9	1
23	Deficiency of the Copper Chaperone for Superoxide Dismutase Increases Amyloid-β Production. Journal of Alzheimer's Disease, 2010, 21, 1101-1105.	1.2	23
24	Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology. Neuroscience, 2010, 167, 774-785.	1.1	69
25	Neurofilament subunit (NFL) head domain phosphorylation regulates axonal transport of neurofilaments. European Journal of Cell Biology, 2009, 88, 193-202.	1.6	46
26	Direct evidence for axonal transport defects in a novel mouse model of mutant spastinâ€induced hereditary spastic paraplegia (HSP) and human HSP patients. Journal of Neurochemistry, 2009, 110, 34-44.	2.1	135
27	Riluzole protects against glutamate-induced slowing of neurofilament axonal transport. Neuroscience Letters, 2009, 454, 161-164.	1.0	34
28	Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6. Science, 2009, 323, 1208-1211.	6.0	2,295
29	Role of Axonal Transport in Neurodegenerative Diseases. Annual Review of Neuroscience, 2008, 31, 151-173.	5.0	638
30	Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Human Molecular Genetics, 2007, 16, 2720-2728.	1.4	365
31	Cellâ€Free Assays for Mitochondria–Cytoskeleton Interactions. Methods in Cell Biology, 2007, 80, 683-706.	0.5	2
32	Visualization and Quantification of Mitochondrial Dynamics in Living Animal Cells. Methods in Cell Biology, 2007, 80, 627-682.	0.5	79
33	Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration. FASEB Journal, 2006, 20, 1407-1417.	0.2	129
34	Mitochondrial Function and Actin Regulate Dynamin-Related Protein 1-Dependent Mitochondrial Fission. Current Biology, 2005, 15, 678-683.	1.8	320
35	Expression of Phosphatidylinositol (4,5) Bisphosphate–specific Pleckstrin Homology Domains Alters Direction But Not the Level of Axonal Transport of Mitochondria. Molecular Biology of the Cell, 2003, 14, 3636-3649.	0.9	69
36	RPTP-α acts as a transducer of mechanical force on αv/β3-integrin–cytoskeleton linkages. Journal of Cell Biology, 2003, 161, 143-153.	2.3	194

IF # ARTICLE CITATIONS Tumor Necrosis Factor Induces Hyperphosphorylation of Kinesin Light Chain and Inhibits 2.3 Kinesin-Mediated Transport of Mitochondria. Journal of Cell Biology, 2000, 149, 1207-1214. Role of Reactive Oxygen Species in Tumor Necrosis Factor Toxicity., 2000, , 245-264. 38 0 Redox regulation of TNF signaling. BioFactors, 1999, 10, 145-156. Significance of Host Cell Kinesin in the Development of <i>Chlamydia psittaci</i>. Infection and 40 1.0 12 Immunity, 1999, 67, 5441-5446. Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Letters, 1998, 438, 150-158. The 55-kDa Tumor Necrosis Factor Receptor Induces Clustering of Mitochondria through Its Membrane-proximal Region. Journal of Biological Chemistry, 1998, 273, 9673-9680. 42 1.6 150 A Caspase-activated Factor (CAF) Induces Mitochondrial Membrane Depolarization and Cytochrome c Release by a Nonproteolytic Mechanism. Journal of Experimental Medicine, 1998, 188, 2193-2198. 4.2 34 Induction of Unresponsiveness to Tumor Necrosis Factor (TNF) after Autocrine TNF Expression 44 1.6 12 Requires TNF Membrane Retention. Journal of Biological Chemistry, 1998, 273, 3271-3277. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity.. Proceedings of the National Academy of Ściences of the United 566 States of America, 1995, 92, 8115-8119.

KURT J DE VOS