Thomas Boland

List of Publications by Citations

Source: https://exaly.com/author-pdf/8215822/thomas-boland-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

63 8,141 34 67 g-index

67 8,927 6.5 5.86 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
63	Organ printing: computer-aided jet-based 3D tissue engineering. <i>Trends in Biotechnology</i> , 2003 , 21, 157	-63 .1	960
62	Inkjet printing of viable mammalian cells. <i>Biomaterials</i> , 2005 , 26, 93-9	15.6	800
61	Application of inkjet printing to tissue engineering. <i>Biotechnology Journal</i> , 2006 , 1, 910-7	5.6	604
60	Inkjet printing for high-throughput cell patterning. <i>Biomaterials</i> , 2004 , 25, 3707-15	15.6	585
59	Human microvasculature fabrication using thermal inkjet printing technology. <i>Biomaterials</i> , 2009 , 30, 6221-7	15.6	518
58	Biofabrication: reappraising the definition of an evolving field. <i>Biofabrication</i> , 2016 , 8, 013001	10.5	387
57	Viability and electrophysiology of neural cell structures generated by the inkjet printing method. <i>Biomaterials</i> , 2006 , 27, 3580-8	15.6	367
56	Cell and organ printing 1: protein and cell printers. <i>The Anatomical Record</i> , 2003 , 272, 491-6		349
55	Thermal inkjet printing in tissue engineering and regenerative medicine. <i>Recent Patents on Drug Delivery and Formulation</i> , 2012 , 6, 149-55	1.4	347
54	Biofabrication: A Guide to Technology and Terminology. <i>Trends in Biotechnology</i> , 2018 , 36, 384-402	15.1	309
53	Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. <i>Tissue Engineering</i> , 2004 , 10, 1316-22		299
52	Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. <i>The Anatomical Record</i> , 2003 , 272, 497-502		264
51	Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. <i>Biotechnology and Bioengineering</i> , 2010 , 106, 963-9	4.9	250
50	Direct measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1995 , 92, 5297-301	11.5	216
49	Drop-on-demand printing of cells and materials for designer tissue constructs. <i>Materials Science and Engineering C</i> , 2007 , 27, 372-376	8.3	169
48	The relationship between ligand-binding thermodynamics and protein-ligand interaction forces measured by atomic force microscopy. <i>Biophysical Journal</i> , 1995 , 69, 2125-30	2.9	152
47	Characterization of Patterned Self-Assembled Monolayers and Protein Arrays Generated by the Ink-Jet Method [] Langmuir, 2003, 19, 1462-1466	4	121

46	Fabrication and characterization of bio-engineered cardiac pseudo tissues. <i>Biofabrication</i> , 2009 , 1, 03500	0 10.5	114
45	Construction of high-density bacterial colony arrays and patterns by the ink-jet method. <i>Biotechnology and Bioengineering</i> , 2004 , 85, 29-33	4.9	113
44	The role of independently variable grafting density and layer thickness of polymer nanolayers on peptide adsorption and cell adhesion. <i>Biomaterials</i> , 2007 , 28, 763-71	15.6	95
43	Characterization of the physical properties of model biomembranes at the nanometer scale with the atomic force microscope. <i>Faraday Discussions</i> , 1998 , 79-94; discussion 137-57	3.6	93
42	In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds. <i>Tissue Engineering - Part A</i> , 2015 , 21, 224-33	3.9	89
41	Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique. <i>Biomaterials</i> , 2008 , 29, 3781-91	15.6	87
40	Electrophysiological characterization of embryonic hippocampal neurons cultured in a 3D collagen hydrogel. <i>Biomaterials</i> , 2009 , 30, 4377-83	15.6	86
39	Two-Dimensional Assembly of Purines and Pyrimidines on Au(111). <i>Langmuir</i> , 1994 , 10, 3845-3852	4	83
38	Cell and organ printing turns 15: Diverse research to commercial transitions. MRS Bulletin, 2013, 38, 834	-843	73
37	Frictional properties of poly(MPC-co-BMA) phospholipid polymer for catheter applications. <i>Biomaterials</i> , 2003 , 24, 5121-9	15.6	73
36	Advances in tissue engineering: cell printing. <i>Journal of Thoracic and Cardiovascular Surgery</i> , 2005 , 129, 470-2	1.5	60
35	Biocompatible, large-format, inkjet printed heterostructure MoS2-graphene photodetectors on conformable substrates. <i>Npj 2D Materials and Applications</i> , 2017 , 1,	8.8	59
34	Minimally invasive tissue engineering composites and cell printing. <i>IEEE Engineering in Medicine and Biology Magazine</i> , 2003 , 22, 84-91		54
33	Loading dependent swelling and release properties of novel biodegradable, elastic and environmental stimuli-sensitive polyurethanes. <i>Journal of Controlled Release</i> , 2008 , 131, 128-36	11.7	50
32	Surface chemical composition and fibrinogen adsorption-retention of fluoropolymer films deposited from an RF glow discharge. <i>Plasmas and Polymers</i> , 1996 , 1, 299-326		47
31	Nanotribology of CoCrDHMWPE TJR prosthesis using atomic force microscopy. <i>Wear</i> , 2002 , 253, 1145-1	3,555	39
30	Thermal inkjet bioprinting triggers the activation of the VEGF pathway in human microvascular endothelial cells in vitro. <i>Biofabrication</i> , 2019 , 11, 045005	10.5	34
29	In vitro evaluation of phosphonylated low-density polyethylene for vascular applications. <i>Journal of Biomedical Materials Research Part B</i> , 2002 , 62, 514-24		29

28	Nanoindentation properties of compression-moulded ultra-high molecular weight polyethylene. <i>Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine</i> , 2003 , 217, 357-66	1.7	20	
27	Atomic force microscopy of synthetic barite microcrystals. <i>Journal of Crystal Growth</i> , 1997 , 172, 231-2	2481.6	15	
26	Design and implementation of a two-dimensional inkjet bioprinter. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2009 , 2009, 6001-5	0.9	14	
25	Thermal Bioprinting Causes Ample Alterations of Expression of LUCAT1, IL6, CCL26, and NRN1L Genes and Massive Phosphorylation of Critical Oncogenic Drug Resistance Pathways in Breast Cancer Cells. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 82	5.8	12	
24	A new approach to fabricate agarose microstructures. <i>Polymers for Advanced Technologies</i> , 2013 , 24, 895-902	3.2	12	
23	A quantitative approach to studying structures and orientation at self-assembled monolayer/fluid interfaces. <i>Journal of Colloid and Interface Science</i> , 2003 , 257, 116-20	9.3	11	
22	Effects of the sample preparation temperature on the nanostructure of compression moulded ultrahigh molecular weight polyethylene. <i>Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine</i> , 2002 , 216, 123-33	1.7	11	
21	Collagen Matrix Alignment Using Inkjet Printer Technology. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1094, 1		10	
20	Experimental and numerical modeling of variable friction between nanoregions in coventional and crosslinked UHMWPE. <i>Journal of Biomechanical Engineering</i> , 2004 , 126, 111-9	2.1	10	
19	Layer-by-layer printing of cells and its application to tissue engineering. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 845, 5		9	
18	Printable Cellular Scaffold Using Self-Crosslinking Agents. <i>Journal of Imaging Science and Technology</i> , 2012 , 56, 1-5	1.2	7	
17	Design and Validation of an Open-Hardware Print-Head for Bioprinting Application. <i>Procedia Engineering</i> , 2015 , 110, 98-105		6	
16	Solution dispersed 2D graphene & MoS2 for an inkjet printed biocompatible photodetector 2016 ,		5	
15	BUILDing SCHOLARS: enhancing diversity among U.S. biomedical researchers in the Southwest. <i>BMC Proceedings</i> , 2017 , 11, 12	2.3	4	
14	2D and 3D thermally bioprinted human MCF-7 breast cancer cells: A promising model for drug discovery <i>Journal of Clinical Oncology</i> , 2019 , 37, 2605-2605	2.2	4	
13	Synthesis and characterization of a photocleavable collagen-like peptide. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 1000-1013	3.9	3	
12	Photolysis of a peptide with -peptidyl-7-nitroindoline units using two-photon absorption. <i>Biomedical Optics Express</i> , 2016 , 7, 4654-4659	3.5	3	
11	Systems engineering challenges in inkjet biofabrication 2007 ,		2	

LIST OF PUBLICATIONS

10	and Non-Cancer Cells. <i>Journal of Imaging Science and Technology</i> , 2016 , 60, 404061-404066	1.2	2
9	Biopolymers and Cells275-305		2
8	How to Define Biofabrication? Review of the Book Biofabrication: Micro- and Nano-Fabrication, Printing, Patterning, and Assemblies, Edited by Gabor Forgacs and Wei Sun (William Andrew, 2013, 265 Pages). 3D Printing and Additive Manufacturing, 2014, 1, 52-54	4	1
7	Precision Printing of Cells and Biomaterials Onto 3D Matrices 2007 , 77		1
6	Molecular basis of cell adhesion to polymers characterized AFM. <i>Critical Reviews in Biomedical Engineering</i> , 2000 , 28, 195-6	1.1	1
5	Photovoltaic surfaces enable clonal myoblastic cell release using visible light as external stimulation. <i>Biotechnology Journal</i> , 2016 , 11, 393-8	5.6	1
4	Bioprinting of Decellularized Porcine Cardiac Tissue for Large-Scale Aortic Models <i>Frontiers in Bioengineering and Biotechnology</i> , 2022 , 10, 855186	5.8	Ο
3	Organ printing332-374		
2	Fabricating Neural and Cardiomyogenic Stem Cell Structures by a Novel Rapid Prototypingthe Inkjet Printing Method. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 845, 30		
1	Two-photon flow cytometry with laser scanning two-dimensional airy beams. <i>Optics Communications</i> , 2022 , 508, 127804	2	