
Cigdem Altintas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8215286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Metal–Organic Framework (MOF) Database Selection on the Assessment of Gas Storage and Separation Potentials of MOFs. Angewandte Chemie - International Edition, 2021, 60, 7828-7837.	13.8	164
2	[BMIM][PF ₆] Incorporation Doubles CO ₂ Selectivity of ZIF-8: Elucidation of Interactions and Their Consequences on Performance. ACS Applied Materials & Interfaces, 2016, 8, 30992-31005.	8.0	131
3	Database for CO ₂ Separation Performances of MOFs Based on Computational Materials Screening. ACS Applied Materials & Interfaces, 2018, 10, 17257-17268.	8.0	129
4	High-Throughput Computational Screening of the Metal Organic Framework Database for CH ₄ /H ₂ Separations. ACS Applied Materials & Interfaces, 2018, 10, 3668-3679.	8.0	108
5	Improving Gas Separation Performance of ZIF-8 by [BMIM][BF ₄] Incorporation: Interactions and Their Consequences on Performance. Journal of Physical Chemistry C, 2017, 121, 10370-10381.	3.1	101
6	Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation. Journal of Chemical Information and Modeling, 2021, 61, 2131-2146.	5.4	97
7	Assessing CH4/N2 separation potential of MOFs, COFs, IL/MOF, MOF/Polymer, and COF/Polymer composites. Chemical Engineering Journal, 2022, 428, 131239.	12.7	89
8	An extensive comparative analysis of two MOF databases: high-throughput screening of computation-ready MOFs for CH ₄ and H ₂ adsorption. Journal of Materials Chemistry A, 2019, 7, 9593-9608.	10.3	87
9	Molecular Simulations of MOF Membranes and Performance Predictions of MOF/Polymer Mixed Matrix Membranes for CO ₂ /CH ₄ Separations. ACS Sustainable Chemistry and Engineering, 2019, 7, 2739-2750.	6.7	69
10	Can COFs replace MOFs in flue gas separation? high-throughput computational screening of COFs for CO ₂ /N ₂ separation. Journal of Materials Chemistry A, 2020, 8, 14609-14623.	10.3	69
11	Computer simulations of 4240 MOF membranes for H ₂ /CH ₄ separations: insights into structure–performance relations. Journal of Materials Chemistry A, 2018, 6, 5836-5847.	10.3	56
12	High-Throughput Screening of COF Membranes and COF/Polymer MMMs for Helium Separation and Hydrogen Purification. ACS Applied Materials & amp; Interfaces, 2022, 14, 21738-21749.	8.0	38
13	Computational Selection of High-Performing Covalent Organic Frameworks for Adsorption and Membrane-Based CO ₂ /H ₂ Separation. Journal of Physical Chemistry C, 2020, 124, 22577-22590.	3.1	36
14	Oxalamide-Functionalized Metal Organic Frameworks for CO ₂ Adsorption. ACS Applied Materials & Interfaces, 2021, 13, 33188-33198.	8.0	35
15	Role of partial charge assignment methods in high-throughput screening of MOF adsorbents and membranes for CO ₂ /CH ₄ separation. Molecular Systems Design and Engineering, 2020, 5, 532-543.	3.4	31
16	Molecular simulations of MOF membranes for separation of ethane/ethene and ethane/methane mixtures. RSC Advances, 2017, 7, 52283-52295.	3.6	25
17	Effect of Metal–Organic Framework (MOF) Database Selection on the Assessment of Gas Storage and Separation Potentials of MOFs. Angewandte Chemie, 2021, 133, 7907-7916.	2.0	20
18	Multi-scale computational screening to accelerate discovery of IL/COF composites for CO2/N2 separation. Separation and Purification Technology, 2022, 287, 120578.	7.9	12

CIGDEM ALTINTAS

#	Article	IF	CITATIONS
19	MOF adsorbents for flue gas separation: Comparison of material ranking approaches. Chemical Engineering Research and Design, 2022, 179, 308-318.	5.6	11
20	Molecular simulations of porous coordination network-based mixed matrix membranes for CO ₂ /N ₂ separations. Molecular Simulation, 2015, 41, 1396-1408.	2.0	9
21	Enhanced water stability and high CO ₂ storage capacity of a Lewis basic sites-containing zirconium metal–organic framework. Dalton Transactions, 2021, 50, 16587-16592.	3.3	8
22	Reply to Comment on "Database for CO ₂ Separation Performances of MOFs Based on Computational Materials Screening― ACS Applied Materials & Interfaces, 2019, 11, 16266-16271.	8.0	4
23	Metal Exchange Boosts the CO2 Selectivity of Metal Organic Frameworks Having Zn-Oxide Nodes. Journal of Physical Chemistry C, 2021, 125, 17311-17322.	3.1	3