Shane T Grey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8215123/publications.pdf Version: 2024-02-01

109 papers	7,491 citations	47006 47 h-index	54911 84 g-index
117	117	117	10310
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nature Medicine, 1998, 4, 1073-1077.	30.7	601
2	In vivo expansion of T reg cells with IL-2–mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. Journal of Experimental Medicine, 2009, 206, 751-760.	8.5	461
3	BAFF and MyD88 signals promote a lupuslike disease independent of T cells. Journal of Experimental Medicine, 2007, 204, 1959-1971.	8.5	332
4	Superoxide-mediated activation of uncoupling protein 2 causes pancreatic Î ² cell dysfunction. Journal of Clinical Investigation, 2003, 112, 1831-1842.	8.2	300
5	Role for Activating Transcription Factor 3 in Stress-Induced β-Cell Apoptosis. Molecular and Cellular Biology, 2004, 24, 5721-5732.	2.3	287
6	Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nature Immunology, 2006, 7, 274-283.	14.5	228
7	Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Science Translational Medicine, 2017, 9, .	12.4	208
8	A20 Inhibits Cytokine-Induced Apoptosis and Nuclear Factor κB–Dependent Gene Activation in Islets. Journal of Experimental Medicine, 1999, 190, 1135-1146.	8.5	204
9	Hypoxia-inducible factor-1α regulates β cell function in mouse and human islets. Journal of Clinical Investigation, 2010, 120, 2171-2183.	8.2	191
10	Increased Expression of Antioxidant and Antiapoptotic Genes in Islets That May Contribute to Â-Cell Survival During Chronic Hyperglycemia. Diabetes, 2002, 51, 413-423.	0.6	183
11	CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nature Communications, 2019, 10, 3637.	12.8	170
12	The BAFF/APRIL System: An Important Player in Systemic Rheumatic Diseases. , 2004, 8, 243-265.		156
13	Potential Antiinflammatory Role of Insulin via the Preferential Polarization of Effector T Cells toward a T Helper 2 Phenotype. Endocrinology, 2007, 148, 346-353.	2.8	151
14	A20 Inhibits NF-κB Activation in Endothelial Cells Without Sensitizing to Tumor Necrosis Factor–Mediated Apoptosis. Blood, 1998, 91, 2249-2258.	1.4	149
15	A20 protects mice from D-galactosamine/lipopolysaccharide acute toxic lethal hepatitis. Hepatology, 2002, 35, 535-543.	7.3	132
16	BAFF Augments Certain Th1-Associated Inflammatory Responses. Journal of Immunology, 2005, 174, 5537-5544.	0.8	124
17	A20 protects endothelial cells from TNF-, Fas-, and NK-mediated cell death by inhibiting caspase 8 activation. Blood, 2004, 104, 2376-2384.	1.4	122
18	Nuclear Factor-κB Regulates β-Cell Death. Diabetes, 2006, 55, 2491-2501.	0.6	112

#	Article	IF	CITATIONS
19	BINDING OF ACTIVATED PROTEIN C TO A SPECIFIC RECEPTOR ON HUMAN MONONUCLEAR PHAGOCYTES INHIBITS INTRACELLULAR CALCIUM SIGNALING AND MONOCYTE-DEPENDENT PROLIFERATIVE RESPONSES1,2. Transplantation, 1995, 60, 1525-1532.	1.0	109
20	Marginal-Zone B-Cells of Nonobese Diabetic Mice Expand With Diabetes Onset, Invade the Pancreatic Lymph Nodes, and Present Autoantigen to Diabetogenic T-Cells. Diabetes, 2008, 57, 395-404.	0.6	109
21	Interleukin-17A-Induced Human Mesenchymal Stem Cells Are Superior Modulators of Immunological Function. Stem Cells, 2015, 33, 2850-2863.	3.2	109
22	Genetic Engineering of a Suboptimal Islet Graft with A20 Preserves Î ² Cell Mass and Function. Journal of Immunology, 2003, 170, 6250-6256.	0.8	104
23	Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer. Gut, 2018, 67, 2142-2155.	12.1	100
24	XENOGENEIC ENDOTHELIAL CELLS ACTIVATE HUMAN PROTHROMBIN1,2. Transplantation, 1997, 64, 888-896.	1.0	100
25	Multicenter Australian Trial of Islet Transplantation: Improving Accessibility and Outcomes. American Journal of Transplantation, 2013, 13, 1850-1858.	4.7	99
26	The hypoxia response pathway and <i>β</i> ell function. Diabetes, Obesity and Metabolism, 2010, 12, 159-167.	4.4	95
27	MicroRNA-125a and -b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD. JCI Insight, 2017, 2, e90443.	5.0	95
28	Increased CD4+Foxp3+ T Cells in BAFF-Transgenic Mice Suppress T Cell Effector Responses. Journal of Immunology, 2009, 182, 793-801.	0.8	94
29	Extracellular ATP and ADP Activate Transcription Factor NF-κB and Induce Endothelial Cell Apoptosis. Biochemical and Biophysical Research Communications, 1998, 248, 822-829.	2.1	93
30	B-Cell Cross-Presentation of Autologous Antigen Precipitates Diabetes. Diabetes, 2012, 61, 2893-2905.	0.6	88
31	Human Islets Express a Marked Proinflammatory Molecular Signature Prior to Transplantation. Cell Transplantation, 2012, 21, 2063-2078.	2.5	85
32	A RhoA-FRET Biosensor Mouse for Intravital Imaging in Normal Tissue Homeostasis and Disease Contexts. Cell Reports, 2017, 21, 274-288.	6.4	83
33	CD4+CD25+ T-Cells Control Autoimmunity in the Absence of B-Cells. Diabetes, 2009, 58, 1568-1577.	0.6	80
34	B cells in the spotlight: innocent bystanders or major players in the pathogenesis of type 1 diabetes. Trends in Endocrinology and Metabolism, 2006, 17, 128-135.	7.1	78
35	Interleukin-21 Is Critically Required in Autoimmune and Allogeneic Responses to Islet Tissue in Murine Models. Diabetes, 2011, 60, 867-875.	0.6	72
36	Report of the Key Opinion Leaders Meeting on Stem Cell-derived Beta Cells. Transplantation, 2018, 102, 1223-1229.	1.0	72

#	Article	IF	CITATIONS
37	A20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia. FASEB Journal, 2006, 20, 1418-1430.	0.5	71
38	B cells as effectors and regulators of autoimmunity. Autoimmunity, 2012, 45, 377-387.	2.6	68
39	A20 Protects From CD40-CD40 Ligand-Mediated Endothelial Cell Activation and Apoptosis. Circulation, 2003, 108, 1113-1118.	1.6	67
40	A Role for Intrathymic B Cells in the Generation of Natural Regulatory T Cells. Journal of Immunology, 2014, 193, 170-176.	0.8	65
41	IL-2/IL-2Ab Complexes Induce Regulatory T Cell Expansion and Protect against Proteinuric CKD. Journal of the American Society of Nephrology: JASN, 2012, 23, 1303-1308.	6.1	63
42	DEPLETING ANTI-CD4 MONOCLONAL ANTIBODY CURES NEW-ONSET DIABETES, PREVENTS RECURRENT AUTOIMMUNE DIABETES, AND DELAYS ALLOGRAFT REJECTION IN NONOBESE DIABETIC MICE1. Transplantation, 2004, 77, 990-997.	1.0	62
43	Hypoxia-Inducible Factor-1α (HIF-1α) Potentiates β-Cell Survival after Islet Transplantation of Human and Mouse Islets. Cell Transplantation, 2013, 22, 253-266.	2.5	61
44	Functional dichotomy of A20 in apoptotic and necrotic cell death. Biochemical Journal, 2005, 387, 47-55.	3.7	59
45	A20 protects mice from lethal radical hepatectomy by promoting hepatocyte proliferation via a p21waf1-dependent mechanism. Hepatology, 2005, 42, 156-164.	7.3	57
46	Deficiency of Atf3, an adaptive-response gene, protects islets and ameliorates inflammation in a syngeneic mouse transplantation model. Diabetologia, 2010, 53, 1438-1450.	6.3	56
47	Intravital FRAP Imaging using an E-cadherin-GFP Mouse Reveals Disease- and Drug-Dependent Dynamic Regulation of Cell-Cell Junctions in Live Tissue. Cell Reports, 2016, 14, 152-167.	6.4	54
48	Denisovan, modern human and mouse TNFAIP3 alleles tune A20 phosphorylation and immunity. Nature Immunology, 2019, 20, 1299-1310.	14.5	53
49	Nuclear factor κB–inducing kinase activation as a mechanism of pancreatic β cell failure in obesity. Journal of Experimental Medicine, 2015, 212, 1239-1254.	8.5	52
50	A Preexistent Hypoxic Gene Signature Predicts Impaired Islet Graft Function and Glucose Homeostasis. Cell Transplantation, 2013, 22, 2147-2159.	2.5	47
51	EXPRESSION OF HUMAN THROMBOMODULIN COFACTOR ACTIVITY IN PORCINE ENDOTHELIAL CELLS1,2. Transplantation, 1998, 66, 244-251.	1.0	47
52	B cell-directed therapies in type 1 diabetes. Trends in Immunology, 2011, 32, 287-294.	6.8	45
53	Receptor for advanced glycation end-products (RAGE) provides a link between genetic susceptibility and environmental factors in type 1 diabetes. Diabetologia, 2011, 54, 1032-1042.	6.3	43
54	PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2306-15.	7.1	40

#	Article	IF	CITATIONS
55	Cellular immune responses in the skin of sheep infected with larvae of Lucilia cuprina, the sheep blowfly. Veterinary Parasitology, 1992, 44, 151-162.	1.8	38
56	Regulation of Monocyte Tissue Factor Activity by Allogeneic and Xenogeneic Endothelial Cells. Thrombosis and Haemostasis, 1998, 79, 529-538.	3.4	36
57	Neuropeptide Y1 Receptor in Immune Cells Regulates Inflammation and Insulin Resistance Associated With Diet-Induced Obesity. Diabetes, 2012, 61, 3228-3238.	0.6	36
58	Spatial and Temporal Control of CRISPR-Cas9-Mediated Gene Editing Delivered via a Light-Triggered Liposome System. ACS Applied Materials & Interfaces, 2020, 12, 52433-52444.	8.0	36
59	Combined expression of A1 and A20 achieves optimal protection of renal proximal tubular epithelial cells. Kidney International, 2005, 68, 1520-1532.	5.2	35
60	Intrinsic Molecular Factors Cause Aberrant Expansion of the Splenic Marginal Zone B Cell Population in Nonobese Diabetic Mice. Journal of Immunology, 2013, 191, 97-109.	0.8	32
61	Transcriptome Profiling of IL-17A Preactivated Mesenchymal Stem Cells: A Comparative Study to Unmodified and IFN- <i>γ</i> Modified Mesenchymal Stem Cells. Stem Cells International, 2017, 2017, 1-16.	2.5	32
62	A20 as an immune tolerance factor can determine islet transplant outcomes. JCI Insight, 2019, 4, .	5.0	27
63	Baculoviral inhibitors of apoptosis repeat containing (BIRC) proteins fine-tune TNF-induced nuclear factor I®B and c-Jun N-terminal kinase signalling in mouse pancreatic beta cells. Diabetologia, 2013, 56, 520-532.	6.3	25
64	A new role for an old player: Do B cells unleash the self-reactive CD8+ T cell storm necessary for the development of type 1 diabetes?. Journal of Autoimmunity, 2008, 31, 301-305.	6.5	24
65	Sulindac activates NF-κB signaling in colon cancer cells. Cell Communication and Signaling, 2013, 11, 73.	6.5	23
66	Inhibition of Y1 receptor signaling improves islet transplant outcome. Nature Communications, 2017, 8, 490.	12.8	23
67	Expression of Pro- and Antiapoptotic Molecules of the Bcl-2 Family in Human Islets Postisolation. Cell Transplantation, 2012, 21, 49-60.	2.5	22
68	A novel function for A20 in smooth muscle cells: inhibition of activation and proliferation. Transplantation Proceedings, 1999, 31, 858-859.	0.6	19
69	Beta-cell adaptation to hyperglycemia. Diabetes, 2001, 50, S180-S181.	0.6	19
70	Low-Dose Rapamycin Unmasks the Protective Potential of Targeting Intragraft NF-κB for Islet Transplants. Cell Transplantation, 2013, 22, 2355-2366.	2.5	19
71	IGF2: an endocrine hormone to improve islet transplant survival. Journal of Endocrinology, 2014, 221, R41-R48.	2.6	19
72	Adenovirus-mediated gene transfer of the anti-apoptotic protein A20 in rodent islets inhibits IL-1β-induced NO release. Transplantation Proceedings, 1999, 31, 789.	0.6	18

#	Article	IF	CITATIONS
73	Adenovirus-mediated gene transfer of A20 in murine islets inhibits Fas-induced apoptosis. Transplantation Proceedings, 2001, 33, 577-578.	0.6	18
74	Reduction of ARNT in myeloid cells causes immune suppression and delayed wound healing. American Journal of Physiology - Cell Physiology, 2014, 307, C349-C357.	4.6	17
75	Influence of chronic hyperglycemia on the loss of the unfolded protein response in transplanted islets. Journal of Molecular Endocrinology, 2013, 51, 225-232.	2.5	16
76	<scp>BAFF</scp> regulates activation of selfâ€reactive <scp>T</scp> cells through <scp>B</scp> â€cell dependent mechanisms and mediates protection in <scp>NOD</scp> mice. European Journal of Immunology, 2014, 44, 983-993.	2.9	16
77	Antigen-Encoding Bone Marrow Terminates Islet-Directed Memory CD8+ T-Cell Responses to Alleviate Islet Transplant Rejection. Diabetes, 2016, 65, 1328-1340.	0.6	16
78	REGULATED AND ENDOTHELIAL CELL-SPECIFIC EXPRESSION OF FAS LIGAND. Transplantation, 1998, 66, 1126-1131.	1.0	16
79	Immunodepletion and Hypoxia Preconditioning of Mouse Compact Bone Cells as a Novel Protocol to Isolate Highly Immunosuppressive Mesenchymal Stem Cells. Stem Cells and Development, 2017, 26, 512-527.	2.1	14
80	Mice Deficient in GEM GTPase Show Abnormal Glucose Homeostasis Due to Defects in Beta-Cell Calcium Handling. PLoS ONE, 2012, 7, e39462.	2.5	14
81	TRAF2 regulates peripheral CD8 ⁺ Tâ€cell and NKTâ€cell homeostasis by modulating sensitivity to ILâ€15. European Journal of Immunology, 2015, 45, 1820-1831.	2.9	11
82	Emerging Roles for A20 in Islet Biology and Pathology. Advances in Experimental Medicine and Biology, 2014, 809, 141-162.	1.6	9
83	A20 Inhibits NF-κB Activation in Endothelial Cells Without Sensitizing to Tumor Necrosis Factor–Mediated Apoptosis. Blood, 1998, 91, 2249-2258.	1.4	9
84	Invasion of the killer B's in type 1 diabetes. Frontiers in Bioscience - Landmark, 2007, 12, 2183.	3.0	9
85	Oxygen-permeable microwell device maintains islet mass and integrity during shipping. Endocrine Connections, 2018, 7, 490-503.	1.9	8
86	Regulating inflammation: The ying and yang of NFâ€₽B activation. Immunology and Cell Biology, 2008, 86, 299-300.	2.3	6
87	Targeted deletion of Traf2 allows immunosuppression-free islet allograft survival in mice. Diabetologia, 2017, 60, 679-689.	6.3	6
88	Equipping the islet graft for self defence. Current Opinion in Organ Transplantation, 2018, 23, 97-105.	1.6	6
89	Local Sphingosine Kinase 1 Activity Improves Islet Transplantation. Diabetes, 2017, 66, 1301-1311.	0.6	5
90	A zebrafish functional genomics model to investigate the role of human A20 variants in vivo. Scientific Reports, 2020, 10, 19085.	3.3	5

#	Article	IF	CITATIONS
91	Selection of a novel AAV2/TNFAIP3 vector for local suppression of islet xenograft inflammation. Xenotransplantation, 2021, 28, e12669.	2.8	4
92	Interleukin-33 Exacerbates IgA Glomerulonephritis in Transgenic Mice Overexpressing B Cell Activating Factor. Journal of the American Society of Nephrology: JASN, 2022, , ASN.2021081145.	6.1	4
93	Finding a New Home for Islet Cell Transplants. Transplantation, 2016, 100, 1398-1399.	1.0	3
94	TNFAIP3 Reduction-of-Function Drives Female Infertility and CNS Inflammation. Frontiers in Immunology, 2022, 13, 811525.	4.8	2
95	HUMAN ISLETS PREPARED FOR CLINICAL TRANSPLANTATION EXHIBIT AN ALTERED GLYCOLYTIC PROFILE. Transplantation, 2010, 90, 373.	1.0	1
96	ALLOGRAFT TOLERANCE AFTER IN VIVO EXPANSION OF TREGS WITH IL-2/IL-2 MAB COMPLEXES. Transplantation, 2008, 86, 8.	1.0	0
97	Prolonged Cardiac Allograft Survival in BAFF-Transgenic Mice Associated with Increased Tregs. Transplantation, 2012, 94, 441.	1.0	0
98	A Pre-Existent Hypoxic Gene Signature Predicts Impaired Islet Graft Function and Glucose Homeostasis. Transplantation, 2012, 94, 710.	1.0	0
99	B-lymphocyte therapy for Type 2 diabetes: the †B' side of diabetic medication?. Immunotherapy, 2013, 5, 669-672.	2.0	0
100	B Cell Dependent Control of Allograft Tolerance Through Expansion of Thymic CD4+ Foxp3+ T Cells Transplantation, 2014, 98, 379.	1.0	0
101	Telling the tiger by its stripes: mapping the genomics of kidney graft tolerance in real time. Kidney International, 2015, 87, 875-877.	5.2	0
102	Fattening Up Allograft Rejection. Transplantation, 2016, 100, 979-980.	1.0	0
103	Awards in Transplantation Science Recognize the Best Manuscripts Published in Transplantation. Transplantation, 2016, 100, 249-250.	1.0	0
104	Awards in Transplantation Science Recognize the Best Articles Published in Transplantation. Transplantation, 2017, 101, 10-12.	1.0	0
105	The 2017 Transplantation Awards. Transplantation, 2017, 101, 2655-2656.	1.0	0
106	Pancreatic islet characterisation by the hyperspectral Assessment of autofluorescence: a non-invasive, label-free measure of viability. , 2021, , .		0
107	RelA Governs a Network of Islet-Specific Metabolic Genes Necessary for Beta-Cell Function. SSRN Electronic Journal, 0, , .	0.4	0
108	INNATE IMMUNE SENSING AND TISSUE REMODELING OF A BIODEGRADABLE TEMPERING MATRIX SUPPORTED ISLET GRAFT. Transplantation, 2020, 104, S559-S559.	1.0	0

#	Article	IF	CITATIONS
109	Editorial: Beta-Cell Fate: From Gene Circuits to Disease Mechanisms. Frontiers in Genetics, 2022, 13, 822440.	2.3	0