Pvrk Ramacharyulu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8215118/publications.pdf

Version: 2024-02-01

34 papers

602 citations

16 h-index 24 g-index

34 all docs

34 docs citations

times ranked

34

1002 citing authors

#	Article	IF	CITATIONS
1	A phase transition-induced photocathodic p-CuFeO2 nanocolumnar film by reactive ballistic deposition. New Journal of Chemistry, 2022, 46, 1238-1245.	2.8	2
2	Studies on the effect of Cu doping on the structural, thermal and spectroscopic properties of PVA/MAA:EA polyblend films. Materials Research Innovations, 2020, , 1-7.	2.3	5
3	Phase transformation and room temperature stabilization of various Bi ₂ O ₃ nano-polymorphs: effect of oxygen-vacancy defects and reduced surface energy due to adsorbed carbon species. Nanoscale, 2020, 12, 24119-24137.	5 . 6	24
4	Dual roles of [NCN]2- on anatase TiO2: A fully occupied molecular gap state for direct charge injection into the conduction band and an interfacial mediator for the covalent formation of heterostructured g-C3N4/a-TiO2 nanocomposite. Applied Catalysis B: Environmental, 2020, 273, 119036.	20.2	11
5	Spectroscopic, thermal, structural and electrical studies on VO2+ ions doped PVA/MAA:EA polymer blend films. Journal of Science: Advanced Materials and Devices, 2019, 4, 267-275.	3.1	8
6	Mechanistic insights into 4-nitrophenol degradation and benzyl alcohol oxidation pathways over MgO/g-C ₃ N ₄ model catalyst systems. Catalysis Science and Technology, 2018, 8, 2825-2834.	4.1	44
7	Impact of Nonideal Nanoparticles on X-ray Photoelectron Spectroscopic Quantitation: An Investigation Using Simulation and Modeling of Gold Nanoparticles. Analytical Chemistry, 2018, 90, 1621-1627.	6.5	10
8	A catalytic approach to synthesis of PLP analogs and other environmental protocols in a single handed CaO/TiO 2 green nanoparticle. Applied Catalysis B: Environmental, 2017, 210, 276-289.	20.2	14
9	Enhanced charge separation and photoactivity in heterostructured g-C ₃ N ₄ : a synergistic interaction in environmental friendly CaO/g-C ₃ N ₄ . Catalysis Science and Technology, 2017, 7, 4940-4943.	4.1	16
10	Metal ferrite nanoparticles: Synthesis, characterization, and studies on decontamination of sulfur mustard. Journal of Alloys and Compounds, 2017, 692, 833-840.	5 . 5	11
11	MnO ₂ /TiO ₂ catalyzed synthesis of coenzyme pyridoxamine-5′-phosphate analogues: 3-deoxypyridoxamine-5′-phosphate. RSC Advances, 2016, 6, 10242-10248.	3.6	4
12	Synthesis of mesoporous metal aluminate nanoparticles and studies on the decontamination of sulfur mustard. Journal of Alloys and Compounds, 2016, 662, 44-53.	5 . 5	21
13	Improved photocatalytic activity of RGO/MoS ₂ nanosheets decorated on TiO ₂ nanoparticles. RSC Advances, 2016, 6, 31661-31667.	3.6	43
14	Mesoporous binary metal oxide nanocomposites: Synthesis, characterization and decontamination of sulfur mustard. Materials Chemistry and Physics, 2016, 173, 168-178.	4.0	6
15	Molecular sieves supported with metal oxide nanoparticles: synthesis, characterization and decontamination of sulfur mustard. Journal of Porous Materials, 2015, 22, 91-100.	2.6	5
16	N-doped, S-doped TiO ₂ nanocatalysts: synthesis, characterization and photocatalytic activity in the presence of sunlight. RSC Advances, 2015, 5, 37096-37101.	3.6	34
17	Montmorillonites supported with metal oxide nanoparticles for decontamination of sulfur mustard. Applied Clay Science, 2015, 116-117, 263-272.	5.2	38
18	Iron phthalocyanine modified mesoporous titania nanoparticles for photocatalytic activity and CO ₂ capture applications. Physical Chemistry Chemical Physics, 2015, 17, 26456-26462.	2.8	39

#	Article	IF	CITATIONS
19	Synthesis, characterization and photocatalytic activity of Ag–TiO ₂ nanoparticulate film. RSC Advances, 2015, 5, 1309-1314.	3.6	27
20	Breakthrough behaviour of activated charcoal cloth samples against oxygen analogue of sulphur mustard. Carbon Letters, 2015, 16, 19-24.	5.9	3
21	Sulphur doped nano TiO 2: Synthesis, characterization and photocatalytic degradation of a toxic chemical in presence of sunlight. Materials Chemistry and Physics, 2014, 148, 692-698.	4.0	49
22	Sunlight assisted photocatalytic detoxification of sulfur mustard on vanadium ion doped titania nanocatalysts. Journal of Molecular Catalysis A, 2014, 387, 38-44.	4.8	10
23	Sorbent Decontaminant Based on Molecular Sieves Supported with Ag ₂ O Nanoparticles for Decontamination of Sarin. Advanced Porous Materials, 2014, 2, 130-136.	0.3	0
24	Mesoporous CuO–ZnO binary metal oxide nanocomposite forÂdecontamination of sulfur mustard. Materials Chemistry and Physics, 2013, 142, 484-490.	4.0	20
25	Impregnated charcoal cloth for the treatment of air polluted with hydrogen cyanide. Environmental Progress and Sustainable Energy, 2013, 32, 715-720.	2.3	3
26	Photocatalytic Decontamination of Sulfur Mustard Over Manganese Oxide Nanobelts. Environmental Progress and Sustainable Energy, 2013, 32, 1118-1123.	2.3	6
27	Mesoporous CuO–ZnO Binary Metal Oxide Nanocomposite for Decontamination of Sarin. Advanced Porous Materials, 2013, 1, 310-315.	0.3	3
28	Mesoporous Vanadium Ion Doped Titania Nanocatalysts for the Photocatalytic Degradation of Sulfur Mustard. Advanced Porous Materials, 2013, 1, 286-293.	0.3	2
29	Comparison of Various Mesoporous Transition Metal Ion Doped Titania Nanocatalysts for Sunlight Assisted Photocatalytic Degradation of Sulfur Mustard. Advanced Porous Materials, 2013, 1, 397-404.	0.3	1
30	Photocatalytic decontamination of sulfur mustard using titania nanomaterials. Journal of Molecular Catalysis A, 2012, 353-354, 132-137.	4.8	27
31	Photocatalytic degradation of paraoxon-ethyl in aqueous solution using titania nanoparticulate film. Thin Solid Films, 2012, 520, 5597-5601.	1.8	27
32	Sun light assisted photocatalytic decontamination of sulfur mustard using ZnO nanoparticles. Journal of Molecular Catalysis A, 2011, 349, 55-62.	4.8	44
33	Photocatalytic inactivation of spores of Bacillus anthracis using titania nanomaterials. Journal of Hazardous Materials, 2011, 185, 977-982.	12.4	23
34	Decontamination of Yperite using mesoporous mixed metal oxide nanocrystals. Journal of Hazardous Materials, 2010, 183, 847-852.	12.4	22