Gary Stern

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8215086/gary-stern-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

124
papers8,036
citations50
h-index87
g-index124
ext. papers8,724
ext. citations7.3
avg, IF5.46
L-index

#	Paper	IF	Citations
124	Dedication of the STOTEN Special Issue AMAP Assessment 2021: Mercury in the Arctic to Robie W. Macdonald <i>Science of the Total Environment</i> , 2022 , 836, 155581	10.2	
123	Investigation into the geometry and distribution of oil inclusions in sea ice using non-destructive X-ray microtomography and its implications for remote sensing and mitigation potential. <i>Marine Pollution Bulletin</i> , 2021 , 173, 112996	6.7	2
122	Towards the Detection of Oil Spills in Newly-Formed Sea Ice using C-Band Multi-polarization Radar. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 2021 , 1-1	8.1	2
121	Photooxidation and biodegradation potential of a light crude oil in first-year sea ice. <i>Marine Pollution Bulletin</i> , 2021 , 165, 112154	6.7	4
120	Anthropogenic particles (including microfibers and microplastics) in marine sediments of the Canadian Arctic. <i>Science of the Total Environment</i> , 2021 , 784, 147155	10.2	15
119	Mercury and stable isotope (113C and 115N) trends in decapods of the Beaufort Sea. <i>Polar Biology</i> , 2020 , 43, 443-456	2	0
118	Elemental mercury in the marine boundary layer of North America: Temporal and spatial patterns. <i>Marine Chemistry</i> , 2020 , 220, 103755	3.7	
117	A first assessment of microplastics and other anthropogenic particles in Hudson Bay and the surrounding eastern Canadian Arctic waters of Nunavut. <i>Facets</i> , 2020 , 5, 432-454	2.3	24
116	Effect of dissolution, evaporation, and photooxidation on crude oil chemical composition, dielectric properties and its radar signature in the Arctic environment. <i>Marine Pollution Bulletin</i> , 2020 , 151, 11062	6.7و	9
115	Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. <i>Science of the Total Environment</i> , 2019 , 696, 133792	10.2	103
114	Examining the physical processes of corn oil (medium crude oil surrogate) in sea ice and its resultant effect on complex permittivity and normalized radar cross-section. <i>Marine Pollution Bulletin</i> , 2019 , 142, 484-493	6.7	3
113	Oil behavior in sea ice: Changes in chemical composition and resultant effect on sea ice dielectrics. <i>Marine Pollution Bulletin</i> , 2019 , 142, 216-233	6.7	9
112	Algal scavenging of mercury in preindustrial Arctic lakes. <i>Limnology and Oceanography</i> , 2019 , 64, 1558-7	1 54781	4
111	Temporal trends of persistent organic pollutants in Arctic marine and freshwater biota. <i>Science of the Total Environment</i> , 2019 , 649, 99-110	10.2	113
110	Mercury and stable isotope cycles in baleen plates are consistent with year-round feeding in two bowhead whale (Balaena mysticetus) populations. <i>Polar Biology</i> , 2018 , 41, 1881-1893	2	12
109	. IEEE Transactions on Geoscience and Remote Sensing, 2018 , 56, 921-936	8.1	10
108	A Controlled Experiment on Oil Release Beneath Thin Sea Ice and Its Electromagnetic Detection. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 2018 , 56, 4406-4419	8.1	13

(2013-2017)

107	Current use pesticide and legacy organochlorine pesticide dynamics at the ocean-sea ice-atmosphere interface in resolute passage, Canadian Arctic, during winter-summer transition. Science of the Total Environment, 2017, 580, 1460-1469	10.2	23
106	. IEEE Transactions on Geoscience and Remote Sensing, 2017 , 55, 4465-4475	8.1	12
105	Reconstructing variability in West Greenland ocean biogeochemistry and bowhead whale (Balaena mysticetus) food web structure using amino acid isotope ratios. <i>Polar Biology</i> , 2017 , 40, 2225-2238	2	11
104	Organic matter compositions of rivers draining into Hudson Bay: Present-day trends and potential as recorders of future climate change. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2017 , 122, 184	18 2 :7869	9 ¹⁶
103	Organophosphate Esters in Canadian Arctic Air: Occurrence, Levels and Trends. <i>Environmental Science & Environmental Science &</i>	10.3	111
102	Dinoflagellate cyst production over an annual cycle in seasonally ice-covered Hudson Bay. <i>Marine Micropaleontology</i> , 2016 , 125, 1-24	1.7	36
101	Ecological niche of coastal Beaufort Sea fishes defined by stable isotopes and fatty acids. <i>Marine Ecology - Progress Series</i> , 2016 , 559, 159-173	2.6	9
100	Annual cycles of organochlorine pesticide enantiomers in Arctic air suggest changing sources and pathways. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 1411-1420	6.8	18
99	Spatial, temporal, and source variations of hydrocarbons in marine sediments from Baffin Bay, Eastern Canadian Arctic. <i>Science of the Total Environment</i> , 2015 , 506-507, 430-43	10.2	27
98	20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean. <i>Environmental Science & Environmental Science & Environme</i>	10.3	36
97	Classification of mercurylabile organic matter relationships in lake sediments. <i>Chemical Geology</i> , 2014 , 373, 87-92	4.2	17
96	Characterization of sedimentary organic matter in recent marine sediments from Hudson Bay, Canada, by Rock-Eval pyrolysis. <i>Organic Geochemistry</i> , 2014 , 68, 52-60	3.1	26
95	Polycyclic aromatic hydrocarbon metabolites in Arctic cod (Boreogadus saida) from the Beaufort Sea and associative fish health effects. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	11
94	Transformation of mercury at the bottom of the Arctic food web: an overlooked puzzle in the mercury exposure narrative. <i>Environmental Science & Environmental Science & Envir</i>	10.3	28
93	Surface sediment dinoflagellate cysts from the Hudson Bay system and their relation to freshwater and nutrient cycling. <i>Marine Micropaleontology</i> , 2014 , 106, 79-109	1.7	49
92	What are the toxicological effects of mercury in Arctic biota?. <i>Science of the Total Environment</i> , 2013 , 443, 775-90	10.2	238
91	Biotic interactions in temporal trends (1992-2010) of organochlorine contaminants in the aquatic food web of Lake Laberge, Yukon Territory. <i>Science of the Total Environment</i> , 2013 , 443, 80-92	10.2	11
90	When will HCH disappear from the western Arctic Ocean?. <i>Journal of Marine Systems</i> , 2013 , 127, 88-100	02.7	18

89	Scavenging amphipods: sentinels for penetration of mercury and persistent organic chemicals into food webs of the deep Arctic Ocean. <i>Environmental Science & Environmental Sc</i>	10.3	16
88	Importance of Arctic zooplankton seasonal migrations for Hexachlorocyclohexane bioaccumulation dynamics. <i>Environmental Science & Environmental & Environmenta</i>	10.3	5
87	Change at the margin of the North Water Polynya, Baffin Bay, inferred from organic matter records in dated sediment cores. <i>Marine Geology</i> , 2013 , 341, 1-13	3.3	9
86	Mercury uptake within an ice algal community during the spring bloom in first-year Arctic sea ice. <i>Journal of Geophysical Research: Oceans</i> , 2013 , 118, 4746-4754	3.3	8
85	How does climate change influence Arctic mercury?. Science of the Total Environment, 2012, 414, 22-42	10.2	169
84	Total and methylated mercury in the Beaufort Sea: the role of local and recent organic remineralization. <i>Environmental Science & Environmental Scienc</i>	10.3	52
83	Consequences of change and variability in sea ice on marine ecosystem and biogeochemical processes during the 2007\(\textit{\textit{0}} 008 \) Canadian International Polar Year program. Climatic Change, 2012, 115, 135-159	4.5	24
82	Mechanisms and implications of ⊞CH enrichment in melt pond water on Arctic sea ice. Environmental Science & amp; Technology, 2012, 46, 11862-9	10.3	16
81	Western Canadian Arctic ringed seal organic contaminant trends in relation to sea ice break-up. <i>Environmental Science & Environmental Science & Envir</i>	10.3	22
80	Mercury biomagnification in marine zooplankton food webs in Hudson Bay. <i>Environmental Science</i> & amp; Technology, 2012 , 46, 12952-9	10.3	57
79	Standardisation of RockEval pyrolysis for the analysis of recent sediments and soils. <i>Organic Geochemistry</i> , 2012 , 46, 38-53	3.1	96
78	Determination of mercury biogeochemical fluxes in the remote Mackenzie River Basin, northwest Canada, using speciation of sulfur and organic carbon. <i>Applied Geochemistry</i> , 2012 , 27, 815-824	3.5	19
77	Mercury toxicity in beluga whale lymphocytes: limited effects of selenium protection. <i>Aquatic Toxicology</i> , 2012 , 109, 185-93	5.1	39
76	Comparison of micrometeorological and two-film estimates of air-water gas exchange for alpha-hexachlorocyclohexane in the Canadian archipelago. <i>Environmental Science and Pollution Research</i> , 2012 , 19, 1908-14	5.1	3
75	Use of stable isotopes and trace elements to determine harvest composition and wintering assemblages of belugas at a contemporary ecological scale. <i>Endangered Species Research</i> , 2012 , 18, 179)- 1 951	6
74	Inferences about the modern organic carbon cycle from diagenesis of redox-sensitive elements in Hudson Bay. <i>Journal of Marine Systems</i> , 2011 , 88, 451-462	2.7	13
73	Temporal trends of Hg in Arctic biota, an update. Science of the Total Environment, 2011, 409, 3520-6	10.2	98
72	Methylmercury and selenium speciation in different tissues of beluga whales (Delphinapterus leucas) from the western Canadian Arctic. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 2732-8	3.8	38

(2008-2011)

71	organic pollutants in the Arctic: a quality assurance/quality control assessment. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 3111-8		8
70	Air-water exchange of anthropogenic and natural organohalogens on International Polar Year (IPY) expeditions in the Canadian Arctic. <i>Environmental Science & Environmental Sc</i>	10.3	62
69	Mercury distribution and transport across the ocean-sea-ice-atmosphere interface in the Arctic Ocean. <i>Environmental Science & Environmental Science &</i>	10.3	41
68	Natural and anthropogenic mercury distribution in marine sediments from Hudson Bay, Canada. <i>Environmental Science & Environmental Science & Environme</i>	10.3	35
67	Biogeochemical controls on PCB deposition in Hudson Bay. <i>Environmental Science & Environmental Scienc</i>	10.3	32
66	Hand Elexachlorocyclohexane measurements in the brine fraction of sea ice in the Canadian High Arctic using a sump-hole technique. <i>Environmental Science & Environmental Scie</i>	10.3	25
65	Elemental and stable isotopic constraints on river influence and patterns of nitrogen cycling and biological productivity in Hudson Bay. <i>Continental Shelf Research</i> , 2010 , 30, 163-176	2.4	42
64	Increasing contaminant burdens in an arctic fish, Burbot (Lota lota), in a warming climate. <i>Environmental Science & Environmental Science & Environme</i>	10.3	116
63	The international polar year (IPY) circumpolar flaw lead (CFL) system study: The importance of brine processes for <code>\(\text{H}\)</code> and <code>\(\text{E}\) hexachlorocyclohexane (HCH) accumulation or rejection in sea ice. Atmosphere - Ocean, 2010, 48, 244-262</code>	1.5	31
62	Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993-2006. <i>Science of the Total Environment</i> , 2010 , 408, 2854-73	10.2	260
61	Summer diet of beluga whales inferred by fatty acid analysis of the eastern Beaufort Sea food web. Journal of Experimental Marine Biology and Ecology, 2009 , 374, 12-18	2.1	107
60	Towards a sediment and organic carbon budget for Hudson Bay. <i>Marine Geology</i> , 2009 , 264, 190-208	3.3	35
59	Characterization of organic matter in surface sediments of the Mackenzie River Basin, Canada. <i>International Journal of Coal Geology</i> , 2009 , 77, 416-423	5.5	30
58	Mercury in the Arctic: are we overlooking the ocean?. <i>Integrated Environmental Assessment and Management</i> , 2009 , 5, 178-80	2.5	
57	Mercury trends in ringed seals (Phoca hispida) from the western Canadian Arctic since 1973: associations with length of ice-free season. <i>Environmental Science & Environmental & Environmenta</i>	10.3	49
56	Trophodynamics of some PFCs and BFRs in a western Canadian Arctic marine food web. <i>Environmental Science & Environmental Scie</i>	10.3	98
55	Historical interrelated variations of mercury and aquatic organic matter in lake sediment cores from a subArctic lake in Yukon, Canada: further evidence toward the algal-mercury scavenging hypothesis. <i>Environmental Science & Environmental Environmenta</i>	10.3	70
54	Sea ice, hydrological, and biological processes in the Churchill River estuary region, Hudson Bay. <i>Estuarine, Coastal and Shelf Science</i> , 2008 , 77, 369-384	2.9	32

53	Contemporary and preindustrial mass budgets of mercury in the Hudson Bay Marine System: the role of sediment recycling. <i>Science of the Total Environment</i> , 2008 , 406, 190-204	10.2	33
52	The overlooked role of the ocean in mercury cycling in the Arctic. <i>Marine Pollution Bulletin</i> , 2008 , 56, 1963-5	6.7	11
51	Linking mercury exposure to habitat and feeding behaviour in Beaufort Sea beluga whales. <i>Journal of Marine Systems</i> , 2008 , 74, 1012-1024	2.7	89
50	Size and biomagnification: How Habitat selection explains beluga mercury levels. <i>Environmental Science & Environmental Scienc</i>	10.3	63
49	Sources, pathways and sinks of particulate organic matter in Hudson Bay: Evidence from lignin distributions. <i>Marine Chemistry</i> , 2008 , 112, 215-229	3.7	58
48	Spatial Distributions and Temporal Trends in Sediment Contamination in Lake St. Clair. <i>Journal of Great Lakes Research</i> , 2007 , 33, 668	3	27
47	The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River. <i>Science of the Total Environment</i> , 2007 , 373, 178-95	10.2	100
46	Evidence for control of mercury accumulation rates in Canadian High Arctic lake sediments by variations of aquatic primary productivity. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	165
45	Gas-phase ambient air contaminants exhibit significant dioxin-like and estrogen-like activity in vitro. <i>Environmental Health Perspectives</i> , 2006 , 114, 697-703	8.4	38
44	Segregation of Beaufort Sea beluga whales during the open-water season. <i>Canadian Journal of Zoology</i> , 2006 , 84, 1743-1751	1.5	77
43	Spatial and seasonal variations of Hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) in the Arctic atmosphere. <i>Environmental Science & Environmental </i>	10.3	86
42	Dynamics of PCBs in the Food Web of Lake Winnipeg. <i>Journal of Great Lakes Research</i> , 2006 , 32, 712	3	10
41	Resolving the long-term trends of polycyclic aromatic hydrocarbons in the Canadian Arctic atmosphere. <i>Environmental Science & Environmental &</i>	10.3	56
40	Short and medium chain length chlorinated paraffins in UK human milk fat. <i>Environment International</i> , 2006 , 32, 34-40	12.9	87
39	Spatial and temporal variability in air concentrations of short-chain (C10-C13) and medium-chain (C14-C17) chlorinated n-alkanes measured in the U.K. atmosphere. <i>Environmental Science & Environmental Science & Technology</i> , 2005 , 39, 4407-15	10.3	73
38	Biogeographic provinces of total and methyl mercury in zooplankton and fish from the Beaufort and Chukchi seas: results from the SHEBA drift. <i>Environmental Science & Environmental Science & Environ</i>	7 ⁻¹ 13 ³	45
37	Trace metal profiles in the varved sediment of an Arctic lake. <i>Geochimica Et Cosmochimica Acta</i> , 2005 , 69, 4881-4894	5.5	66
36	Using passive air samplers to assess urban-rural trends for persistent organic pollutants and polycyclic aromatic hydrocarbons. 2. Seasonal trends for PAHs, PCBs, and organochlorine pesticides. Environmental Science & Amn: Technology. 2005, 39, 5763-73	10.3	203

(2001-2005)

35	Fate of organochlorine contaminants in arctic and subarctic lakes estimated by mass balance modelling. <i>Science of the Total Environment</i> , 2005 , 342, 245-59	10.2	15
34	Modern and historical fluxes of halogenated organic contaminants to a lake in the Canadian arctic, as determined from annually laminated sediment cores. <i>Science of the Total Environment</i> , 2005 , 342, 223-43	10.2	82
33	Temporal and spatial variabilities of atmospheric polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides and polycyclic aromatic hydrocarbons (PAHs) in the Canadian Arctic: results from a decade of monitoring. <i>Science of the Total Environment</i> , 2005 , 342, 119-44	10.2	229
32	Refined tunable methodology for characterization of contaminant-particle relationships in surface water. <i>Journal of Environmental Quality</i> , 2004 , 33, 2132-40	3.4	5
31	Using passive air samplers to assess urban-rural trends for persistent organic pollutants. 1. Polychlorinated biphenyls and organochlorine pesticides. <i>Environmental Science & Environmental Science </i>	10.3	339
30	Mercury and other contaminants in fish from Lake Chad, Africa. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2004 , 73, 249-56	2.7	22
29	Semivolatile organic compounds in window films from lower Manhattan after the September 11th World Trade Center attacks. <i>Environmental Science & Environmental Science & Envi</i>	10.3	37
28	Fluorinated organic compounds in an eastern Arctic marine food web. <i>Environmental Science & Environmental Science & Technology</i> , 2004 , 38, 6475-81	10.3	291
27	PAHs, PCBs, PCNs, organochlorine pesticides, synthetic musks, and polychlorinated n-alkanes in U.K. sewage sludge: survey results and implications. <i>Environmental Science & Environmental Science & E</i>	10.3	278
26	Spatial and temporal trends in short-chain chlorinated paraffins in Lake Ontario sediments. <i>Environmental Science & Environmental Science & Environme</i>	10.3	74
25	Levels and trends of polybrominated diphenylethers and other brominated flame retardants in wildlife. <i>Environment International</i> , 2003 , 29, 757-70	12.9	359
24	Spatial and Temporal Trends in Sediment Contamination in Lake Ontario. <i>Journal of Great Lakes Research</i> , 2003 , 29, 317-331	3	56
23	Global distribution of halogenated dimethyl bipyrroles in marine mammal blubber. <i>Archives of Environmental Contamination and Toxicology</i> , 2002 , 43, 244-55	3.2	46
22	Temporal trends of organochlorine pesticides in the Canadian Arctic atmosphere. <i>Environmental Science & Environmental Science</i>	10.3	126
21	Surficial Sediment Contamination in Lakes Erie and Ontario: A Comparative Analysis. <i>Journal of Great Lakes Research</i> , 2002 , 28, 437-450	3	50
20	Persistent organic pollutants (POPs) in a small, herbivorous, arctic marine zooplankton (Calanus hyperboreus): trends from April to July and the influence of lipids and trophic transfer. <i>Marine Pollution Bulletin</i> , 2001 , 43, 93-101	6.7	68
19	Comparison of an individual congener standard and a technical mixture for the quantification of toxaphene in environmental matrices by HRGC/ECNI-HRMS. <i>Environmental Science & amp; Technology</i> , 2001 , 35, 3513-8	10.3	29
18	Are PCBs in the Canadian Arctic atmosphere declining? Evidence from 5 years of monitoring. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	74

17	Atmospherically derived organic surface films along an urban-rural gradient. <i>Environmental Science & Environmental & </i>	10.3	120
16	Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. <i>Science of the Total Environment</i> , 2000 , 254, 93-234	10.2	526
15	Temporal and spatial trends of persistent organochlorines in Greenland walrus (Odobenus rosmarus rosmarus). <i>Science of the Total Environment</i> , 2000 , 245, 73-86	10.2	26
14	Levels of C10 [13Polychloro-n-Alkanes in Marine Mammals from the Arctic and the St. Lawrence River Estuary. <i>Environmental Science & Estuary. Environmental Science & Estuary. Environmental Science & Estuary. Environmental Science & Estuary. Environmental Estuary. </i>	10.3	86
13	Evidence for Organic Film on an Impervious Urban Surface: Characterization and Potential Teratogenic Effects. <i>Environmental Science & Environmental S</i>	10.3	125
12	Interlaboratory Study on Quantitative Methods of Analysis of C10 © 13Polychloro-n-alkanes. <i>Analytical Chemistry</i> , 1999 , 71, 446-451	7.8	66
11	Enantioselective determination of two persistent chlorobornane congeners in sediment from a toxaphene-treated yukon lake. <i>Environmental Toxicology and Chemistry</i> , 1999 , 18, 2775-2781	3.8	34
10	Geometrical isomerism and 19F NMR spectroscopy of octahedral perfluoroethyl- and perfluoropropyl-substituted Ediketonates and monothio-Ediketonates of rhodium(III). <i>Canadian Journal of Chemistry</i> , 1999 , 77, 1734-1744	0.9	5
9	Occurrence of C10II13 Polychlorinated n-Alkanes in Canadian Midlatitude and Arctic Lake Sediments. <i>Environmental Science & Environmental Science & En</i>	10.3	127
8	Analysis of C(14)-C(17) Polychloro-n-alkanes in Environmental Matrixes by Accelerated Solvent Extraction-High-Resolution Gas Chromatography/Electron Capture Negative Ion High-Resolution Mass Spectrometry. <i>Analytical Chemistry</i> , 1999 , 71, 4860-5	7.8	79
7	Chlorobornanes in Water, Sediment, and Fish from Toxaphene Treated and Untreated Lakes in Western Canada. <i>Environmental Science & Environmental Scien</i>	10.3	33
6	Polychlorinated Biphenyls in Arctic Air. 1. Temporal and Spatial Trends: 1992 1 994. <i>Environmental Science & Environmental Sc</i>	10.3	108
5	Quantifying C10©13 Polychloroalkanes in Environmental Samples by High-Resolution Gas Chromatography/Electron Capture Negative Ion High-Resolution Mass Spectrometry. <i>Analytical Chemistry</i> , 1997 , 69, 2762-2771	7.8	213
4	Characterization of Two Major Toxaphene Components in Treated Lake Sediment. <i>Environmental Science & Environmental Science & </i>	10.3	53
3	Chlorobornanes in sediments and fish 30 years after toxaphene treatment of lakes. <i>Environmental Science & Environmental Scien</i>	10.3	43
2	Mass spectrometric studies of the toxaphene components 2-exo,3-endo,5-exo,6-endo,8,8,10,10-octachlorobornane (T2) and 2-exo,3-endo,5-exo,6-endo,8,8,9,10,10-nonachlorobornane (T12). <i>Biological Mass Spectrometry</i> ,		19
1	Isolation and identification of two major recalcitrant toxaphene congeners in aquatic biota. Environmental Science & Camp; Technology, 1992, 26, 1838-1840	10.3	123