
Giampiero ValÃ"

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8214550/publications.pdf Version: 2024-02-01

<u>Ciamdiedo Vai Ã"</u>

#	Article	IF	CITATIONS
1	High accuracy of genome-enabled prediction of belowground and physiological traits in barley seedlings. G3: Genes, Genomes, Genetics, 2022, , .	0.8	Ο
2	Effect of water management on microbial diversity and composition in an Italian rice field system. FEMS Microbiology Ecology, 2022, 98, .	1.3	11
3	Resistance of European Spring 2-Row Barley Cultivars to Pyrenophora graminea and Detection of Associated Loci. Agronomy, 2021, 11, 374.	1.3	7
4	Characterization of the Resistance to Powdery Mildew and Leaf Rust Carried by the Bread Wheat Cultivar Victo. International Journal of Molecular Sciences, 2021, 22, 3109.	1.8	4
5	Analysis of Cadmium Root Retention for Two Contrasting Rice Accessions Suggests an Important Role for OsHMA2. Plants, 2021, 10, 806.	1.6	11
6	Genomic Prediction of Grain Yield in a Barley MAGIC Population Modeling Genotype per Environment Interaction. Frontiers in Plant Science, 2021, 12, 664148.	1.7	5
7	Effects of the application of a moderate alternate wetting and drying technique on the performance of different European varieties in Northern Italy rice system. Field Crops Research, 2021, 270, 108220.	2.3	16
8	Application of plant-derived bioactive compounds as seed treatments to manage the rice pathogen Fusarium fujikuroi. Crop Protection, 2021, 148, 105739.	1.0	11
9	Fitness Cost Shapes Differential Evolutionary Dynamics of Disease Resistance Genes in Cultivated and Wild Plants. Molecular Plant, 2020, 13, 1352-1354.	3.9	3
10	Genome wide association studies for japonica rice resistance to blast in field and controlled conditions. Rice, 2020, 13, 71.	1.7	14
11	Effects of water management and cultivar on carbon dynamics, plant productivity and biomass allocation in European rice systems. Science of the Total Environment, 2019, 685, 1139-1151.	3.9	23
12	Continuous Flooding or Alternate Wetting and Drying Differently Affect the Accumulation of Health-Promoting Phytochemicals and Minerals in Rice Brown Grain. Agronomy, 2019, 9, 628.	1.3	14
13	GWAS for Starch-Related Parameters in Japonica Rice (Oryza sativa L.). Plants, 2019, 8, 292.	1.6	30
14	Identification and mapping of expressed genes associated with the 2DL QTL for fusarium head blight resistance in the wheat line Wuhan 1. BMC Genetics, 2019, 20, 47.	2.7	16
15	Dissection of coleoptile elongation in <i>japonica</i> rice under submergence through integrated genomeâ€wide association mapping and transcriptional analyses. Plant, Cell and Environment, 2019, 42, 1832-1846.	2.8	36
16	Highâ€resolution mapping of the pericentromeric region on wheat chromosome arm 5 <scp>AS</scp> harbouring the Fusarium head blight resistance <scp>QTL</scp> <i>Qfhs.ifaâ€5A</i> . Plant Biotechnology Journal, 2018, 16, 1046-1056.	4.1	35
17	Rice diversity panel provides accurate genomic predictions for complex traits in the progenies of biparental crosses involving members of the panel. Theoretical and Applied Genetics, 2018, 131, 417-435.	1.8	29
18	Comparative Transcriptome Profiles of Near-Isogenic Hexaploid Wheat Lines Differing for Effective Alleles at the 2DL FHB Resistance QTL. Frontiers in Plant Science, 2018, 9, 37.	1.7	46

#	Article	IF	CITATIONS
19	Regulation and Evolution of NLR Genes: A Close Interconnection for Plant Immunity. International Journal of Molecular Sciences, 2018, 19, 1662.	1.8	68
20	Seed Dormancy Involves a Transcriptional Program That Supports Early Plastid Functionality during Imbibition. Plants, 2018, 7, 35.	1.6	16
21	Genomic Prediction Accounting for Genotype by Environment Interaction Offers an Effective Framework for Breeding Simultaneously for Adaptation to an Abiotic Stress and Performance Under Normal Cropping Conditions in Rice. G3: Genes, Genomes, Genetics, 2018, 8, 2319-2332.	0.8	30
22	Genetic variability of <i>Fusarium fujikuroi</i> populations associated with bakanae of rice in Italy. Plant Pathology, 2017, 66, 469-479.	1.2	12
23	Identification of bakanae disease resistance loci in japonica rice through genome wide association study. Rice, 2017, 10, 29.	1.7	43
24	Genome-Wide Analysis of japonica Rice Performance under Limited Water and Permanent Flooding Conditions. Frontiers in Plant Science, 2017, 8, 1862.	1.7	38
25	Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems. Sustainability, 2017, 9, 347.	1.6	20
26	Stratification of Diversity and Activity of Methanogenic and Methanotrophic Microorganisms in a Nitrogen-Fertilized Italian Paddy Soil. Frontiers in Microbiology, 2017, 8, 2127.	1.5	62
27	Water Management Options for Rice Cultivation in a Temperate Area: A Multi-Objective Model to Explore Economic and Water Saving Results. Water (Switzerland), 2016, 8, 336.	1.2	25
28	Rootstock–scion interaction affecting citrus response to <scp>CTV</scp> infection: a proteomic view. Physiologia Plantarum, 2016, 156, 444-467.	2.6	14
29	Phenotype and gene expression analyses of the <i>Rfoâ€sa1</i> resistant aubergine interaction with <i>Fusarium oxysporum</i> f.Âsp. <i>melongenae</i> and <i>Verticillium dahliae</i> . Plant Pathology, 2016, 65, 1297-1309.	1.2	8
30	Comparative transcriptome profiling of resistant and susceptible rice genotypes in response to the seedborne pathogen Fusarium fujikuroi. BMC Genomics, 2016, 17, 608.	1.2	99
31	Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Horticulture Research, 2016, 3, 16016.	2.9	145
32	Next generation breeding. Plant Science, 2016, 242, 3-13.	1.7	139
33	Genetic analysis of durable resistance to Magnaporthe oryzae in the rice accession Gigante Vercelli identified two blast resistance loci. Molecular Genetics and Genomics, 2016, 291, 17-32.	1.0	13
34	QTLs for Woolly Poplar Aphid (Phloeomyzus passerinii L.) Resistance Detected in an Inter-Specific Populus deltoides x P. nigra Mapping Population. PLoS ONE, 2016, 11, e0152569.	1.1	13
35	Genome-Wide Association Study for Traits Related to Plant and Grain Morphology, and Root Architecture in Temperate Rice Accessions. PLoS ONE, 2016, 11, e0155425.	1.1	80
36	Deep sequencing transcriptional fingerprinting of rice kernels for dissecting grain quality traits. BMC Genomics, 2015, 16, 1091.	1.2	18

#	Article	IF	CITATIONS
37	Physical Mapping of Bread Wheat Chromosome 5A: An Integrated Approach. Plant Genome, 2015, 8, eplantgenome2015.03.0011.	1.6	11
38	QTL Mapping in Eggplant Reveals Clusters of Yield-Related Loci and Orthology with the Tomato Genome. PLoS ONE, 2014, 9, e89499.	1.1	76
39	A new genetic and deletion map of wheat chromosome 5A to detect candidate genes for quantitative traits. Molecular Breeding, 2014, 34, 1599-1611.	1.0	13
40	Identification and mapping of quantitative trait loci for leaf rust resistance derived from a tetraploid wheat Triticum dicoccum accession. Molecular Breeding, 2014, 34, 1659-1675.	1.0	33
41	De novo genome assembly of the soil-borne fungus and tomato pathogen Pyrenochaeta lycopersici. BMC Genomics, 2014, 15, 313.	1.2	39
42	Improvement of marker-based predictability of Apparent Amylose Content in japonica rice through GBSSI allele mining. Rice, 2014, 7, 1.	1.7	147
43	Haplotype variability and identification of new functional alleles at the Rdg2a leaf stripe resistance gene locus. Theoretical and Applied Genetics, 2013, 126, 1575-1586.	1.8	9
44	An Agrobacterium tumefaciens-mediated gene silencing system for functional analysis in grapevine. Plant Cell, Tissue and Organ Culture, 2013, 114, 49-60.	1.2	12
45	Investigation of rice blast development in susceptible and resistant rice cultivars using a <i>gfpâ€</i> expressing <i>Magnaporthe oryzae</i> isolate. Plant Pathology, 2013, 62, 1030-1037.	1.2	16
46	The CC-NB-LRR-type Rdg2a Resistance Gene Evolved Through Recombination and Confers Immunity to the Seed-Borne Barley Leaf Stripe Pathogen in the Absence of Hypersensitive Cell Death. , 2013, , 217-228.		4
47	Development of a deletion and genetic linkage map for the 5A and 5B chromosomes of wheat (<i>Triticum aestivum</i>). Genome, 2012, 55, 417-427.	0.9	9
48	Proteomic characterization of the Rph15 barley resistance gene-mediated defence responses to leaf rust. BMC Genomics, 2012, 13, 642.	1.2	17
49	A RAD Tag Derived Marker Based Eggplant Linkage Map and the Location of QTLs Determining Anthocyanin Pigmentation. PLoS ONE, 2012, 7, e43740.	1.1	119
50	Comparative Transcriptome Profiling of the Early Response to Magnaporthe oryzae in Durable Resistant vs Susceptible Rice (Oryza sativa L.) Genotypes. PLoS ONE, 2012, 7, e51609.	1.1	149
51	Emerging Knowledge from Genome Sequencing of Crop Species. Molecular Biotechnology, 2012, 50, 250-266.	1.3	35
52	Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics, 2011, 12, 304.	1.2	193
53	Identification and mapping of the leaf stripe resistance gene Rdg1a in Hordeum spontaneum. Theoretical and Applied Genetics, 2010, 120, 1207-1218.	1.8	19
54	Polymorphism analysis of genomic regions associated with broad-spectrum effective blast resistance genes for marker development in rice. Molecular Breeding, 2010, 26, 595-617.	1.0	28

#	Article	IF	CITATIONS
55	Segregation distortion and linkage analysis in eggplant (<i>Solanum melongena</i> L.). Genome, 2010, 53, 805-815.	0.9	54
56	The CC-NB-LRR-Type Rdg2a Resistance Gene Confers Immunity to the Seed-Borne Barley Leaf Stripe Pathogen in the Absence of Hypersensitive Cell Death. PLoS ONE, 2010, 5, e12599.	1.1	56
57	Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Molecular Breeding, 2008, 22, 237-250.	1.0	95
58	Identification of differentially expressed genes in the flesh of blood and common oranges. Tree Genetics and Genomes, 2008, 4, 315-331.	0.6	33
59	Histological and molecular analysis of <i>Rdg2a</i> barley resistance to leaf stripe. Molecular Plant Pathology, 2008, 9, 463-478.	2.0	21
60	Haplotype structure around the nud locus in barley and its association with resistance to leaf stripe (Pyrenophora graminea). Plant Breeding, 2007, 126, 24-29.	1.0	2
61	In vitro antifungal activity of the tea tree (Melaleuca alternifolia) essential oil and its major components against plant pathogens. Letters in Applied Microbiology, 2007, 44, 613-618.	1.0	104
62	Haplotype characterization and markers at the barley Mlo powdery mildew resistance locus as tools for marker-assisted selection. Genome, 2006, 49, 864-872.	0.9	10
63	Current status in production and utilization of dihaploids from somatic hybrids between eggplant (Solanum melongena L.) and its wild relatives. Acta Physiologiae Plantarum, 2005, 27, 723-733.	1.0	32
64	Marker assisted selection in crop plants. Plant Cell, Tissue and Organ Culture, 2005, 82, 317-342.	1.2	176
65	High-resolution genetic mapping of the leaf stripe resistance gene Rdg2a in barley. Theoretical and Applied Genetics, 2004, 108, 1401-1408.	1.8	34
66	The PCRâ€Based Marker MWG2018 Linked to the RDG2A Leaf Stripe Resistance Gene Is a Useful Tool for Assessing Barley Resistance in Breeding Programs. Crop Science, 2003, 43, 1036-1042.	0.8	10
67	Genomic regions determining resistance to leaf stripe (Pyrenophora graminea) in barley. Genome, 2002, 45, 460-466.	0.9	24
68	The transcripts of several components of the protein synthesis machinery are cold-regulated in a chloroplast-dependent manner in barley and wheat. Journal of Plant Physiology, 2001, 158, 1541-1546.	1.6	20
69	Identification and mapping of a new leaf stripe resistance gene in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2001, 102, 1286-1291.	1.8	34
70	Cell-Autonomous Expression of Barley Mla1 Confers Race-Specific Resistance to the Powdery Mildew Fungus via a Rar1-Independent Signaling Pathway. Plant Cell, 2001, 13, 337-350.	3.1	203
71	Barley—Pyrenophora gramineainteraction: QTL analysis and gene mapping. Plant Breeding, 1999, 118, 29-35.	1.0	28
72	High expression level of a gene coding for a chloroplastic amino acid selective channel protein is correlated to cold acclimation in cereals. Plant Molecular Biology, 1999, 41, 233-243.	2.0	47

#	Article	IF	CITATIONS
73	Characterization of a hypovirulent insertional mutant ofPyrenophora gramineaand analysis of the barley defence response after inoculation. Plant Pathology, 1998, 47, 657-664.	1.2	6
74	Quantitative resistance to barley leaf stripe (Pyrenophora graminea) is dominated by one major locus. Theoretical and Applied Genetics, 1996, 93-93, 97-101.	1.8	50
75	Quantitative resistance to barley leaf stripe (Pyrenophora graminea) is dominated by one major locus. Theoretical and Applied Genetics, 1996, 93, 97-101.	1.8	10
76	Activation of genes in barley roots in response to infection by two Drechslera graminea isolates. Physiological and Molecular Plant Pathology, 1994, 44, 207-215.	1.3	22