Sang Un Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8213740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treasure from garden: Bioactive compounds of buckwheat. Food Chemistry, 2021, 335, 127653.	4.2	117

2 Anthocyanin Accumulation and Expression of Anthocyanin Biosynthetic Genes in Radish (<i>Raphanus) Tj ETQq0 0.0 rgBT /Oyerlock 10

3	Differential Expression of Flavonoid Biosynthesis Genes and Accumulation of Phenolic Compounds in Common Buckwheat (<i>Fagopyrum esculentum</i>). Journal of Agricultural and Food Chemistry, 2010, 58, 12176-12181.	2.4	98
4	Molecular cloning and characterization of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and genes involved in flavone biosynthesis in Scutellaria baicalensis. Bioresource Technology, 2010, 101, 9715-9722.	4.8	88
5	An up-to-date review of rutin and its biological and pharmacological activities. EXCLI Journal, 2015, 14, 59-63.	0.5	85
6	Effect of Different Agrobacterium rhizogenes Strains on Hairy Root Induction and Phenylpropanoid Biosynthesis in Tartary Buckwheat (Fagopyrum tataricum Gaertn). Frontiers in Microbiology, 2016, 7, 318.	1.5	83
7	Effects of White, Blue, and Red Light-Emitting Diodes on Carotenoid Biosynthetic Gene Expression Levels and Carotenoid Accumulation in Sprouts of Tartary Buckwheat (Fagopyrum tataricum Gaertn.). Journal of Agricultural and Food Chemistry, 2013, 61, 12356-12361.	2.4	79
8	Effects of Light-Emitting Diodes on Expression of Phenylpropanoid Biosynthetic Genes and Accumulation of Phenylpropanoids in <i>Fagopyrum tataricum</i> Sprouts. Journal of Agricultural and Food Chemistry, 2014, 62, 4839-4845.	2.4	79
9	Transcriptome analysis and metabolic profiling of green and red kale (Brassica oleracea var. acephala) seedlings. Food Chemistry, 2018, 241, 7-13.	4.2	75
10	Metabolomics Analysis and Biosynthesis of Rosmarinic Acid in Agastache rugosa Kuntze Treated with Methyl Jasmonate. PLoS ONE, 2013, 8, e64199.	1.1	73
11	Anthocyanin and Carotenoid Contents in Different Cultivars of Chrysanthemum (Dendranthema) Tj ETQq1 1 0.7	84314 rgB 1.7	BT /Qverlock
11	Anthocyanin and Carotenoid Contents in Different Cultivars of Chrysanthemum (Dendranthema) Tj ETQq1 1 0.7 Metabolic Profiling of Glucosinolates, Anthocyanins, Carotenoids, and Other Secondary Metabolites in Kohlrabi (<i>Brassica oleracea</i> var. <i>gongylodes</i>). Journal of Agricultural and Food Chemistry, 2012, 60, 8111-8116.	84314 rgE 1.7 2.4	70 T
11 12 13	Anthocyanin and Carotenoid Contents in Different Cultivars of Chrysanthemum (Dendranthema) Tj ETQq1 1 0.7 Metabolic Profiling of Glucosinolates, Anthocyanins, Carotenoids, and Other Secondary Metabolites in Kohlrabi (<i>Brassica oleracea</i> var. <i>gongylodes</i>). Journal of Agricultural and Food Chemistry, 2012, 60, 8111-8116. MYB Transcription Factors Regulate Glucosinolate Biosynthesis in Different Organs of Chinese Cabbage (Brassica rapa ssp. pekinensis). Molecules, 2013, 18, 8682-8695.	84314 rgE 2.4 1.7	8T <u>/Q</u> verlock 70 68
11 12 13 14	Anthocyanin and Carotenoid Contents in Different Cultivars of Chrysanthemum (Dendranthema) Tj ETQq1 1 0.7 Metabolic Profiling of Glucosinolates, Anthocyanins, Carotenoids, and Other Secondary Metabolites in Kohlrabi (<i>Brassica oleracea</i> var. <i>gongylodes</i>). Journal of Agricultural and Food Chemistry, 2012, 60, 8111-8116. MYB Transcription Factors Regulate Glucosinolate Biosynthesis in Different Organs of Chinese Cabbage (Brassica rapa ssp. pekinensis). Molecules, 2013, 18, 8682-8695. Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis. Journal of Plant Physiology, 2017, 214, 81-90.	84314 rgB 2.4 1.7 1.6	8T <u>/Q</u> verlock 70 68 68
11 12 13 14 15	Anthocyanin and Carotenoid Contents in Different Cultivars of Chrysanthemum (Dendranthema) Tj ETQq1 1 0.7 Metabolic Profiling of Glucosinolates, Anthocyanins, Carotenoids, and Other Secondary Metabolites in Kohlrabi (<i>Brassica oleracea</i> var. <i>gongylodes</i>). Journal of Agricultural and Food Chemistry, 2012, 60, 8111-8116. MYB Transcription Factors Regulate Glucosinolate Biosynthesis in Different Organs of Chinese Cabbage (Brassica rapa ssp. pekinensis). Molecules, 2013, 18, 8682-8695. Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9 , enhances tolerance to drought and salt stresses in transgenic Arabidopsis. Journal of Plant Physiology, 2017, 214, 81-90. Variation of glucosinolates in 62 varieties of Chinese cabbage (Brassica rapa L. ssp. pekinensis) and their antioxidant activity. LWT - Food Science and Technology, 2014, 58, 93-101.	84314 rgE 2.4 1.7 1.6 2.5	8T /Qverlock 70 68 68 66
11 12 13 14 15 16	Anthocyanin and Carotenoid Contents in Different Cultivars of Chrysanthemum (Dendranthema) Tj ETQq1 1 0.7 Metabolic Profiling of Glucosinolates, Anthocyanins, Carotenoids, and Other Secondary Metabolites in Kohlrabi (<i>Brassica oleracea</i> > var. <i>gongylodes</i>). Journal of Agricultural and Food Chemistry, 2012, 60, 8111-8116. MYB Transcription Factors Regulate Glucosinolate Biosynthesis in Different Organs of Chinese Cabbage (Brassica rapa ssp. pekinensis). Molecules, 2013, 18, 8682-8695. Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis. Journal of Plant Physiology, 2017, 214, 81-90. Variation of glucosinolates in 62 varieties of Chinese cabbage (Brassica rapa L. ssp. pekinensis) and their antioxidant activity. LWT - Food Science and Technology, 2014, 58, 93-101. Enhanced Triterpene Accumulation in <i>Panax ginseng Mevalonate-5-pyrophosphate Decarboxylase and Farnesyl Pyrophosphate Synthase. ACS Synthetic Biology, 2014, 3, 773-779.</i>	84314 rgE 2.4 1.7 1.6 2.5 1.9	8T /Qverloci 70 68 68 66 66
 11 12 13 14 15 16 17 	Anthocyanin and Carotenoid Contents in Different Cultivars of Chrysanthemum (Dendranthema) Tj ETQq1 1 0.7 Metabolic Profiling of Glucosinolates, Anthocyanins, Carotenoids, and Other Secondary Metabolites in Kohlrabi (<i>Brassica oleracea</i> var. <i>gongylodes</i>). Journal of Agricultural and Food Chemistry, 2012, 60, 8111-8116. MYB Transcription Factors Regulate Glucosinolate Biosynthesis in Different Organs of Chinese Cabbage (Brassica rapa ssp. pekinensis). Molecules, 2013, 18, 8682-8695. Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis. Journal of Plant Physiology, 2017, 214, 81-90. Variation of glucosinolates in 62 varieties of Chinese cabbage (Brassica rapa L. ssp. pekinensis) and their antioxidant activity. LWT - Food Science and Technology, 2014, 58, 93-101. Enhanced Triterpene Accumulation in <i>Panax ginseng</i> Hairy Roots Overexpressing Mevalonate-5-pyrophosphate Decarboxylase and Farnesyl Pyrophosphate Synthase. ACS Synthetic Biology, 2014, 3, 773-779. Accumulation of Tilianin and Rosmarinic Acid and Expression of Phenylpropanoid Biosynthetic Genes in <i>Agastache rugosa</i>	84314 rgE 2.4 1.7 1.6 2.5 1.9 2.4	8T <u>/9</u> verlock 70 68 68 66 66 65

Sang Un Park

#	Article	IF	CITATIONS
19	Metabolic Profiling and Antioxidant Assay of Metabolites from Three Radish Cultivars (Raphanus) Tj ETQq1 1 0.784	1314 rgBT 1.7	/Qverlock
20	Carotenoid content and expression of phytoene synthase and phytoene desaturase genes in bitter melon (Momordica charantia). Food Chemistry, 2011, 126, 1686-1692.	4.2	56
21	Characterization of two tartary buckwheat <scp>R2R3â€MYB</scp> transcription factors and their regulation of proanthocyanidin biosynthesis. Physiologia Plantarum, 2014, 152, 431-440.	2.6	56
22	Metabolite Profiling Approach Reveals the Interface of Primary and Secondary Metabolism in Colored Cauliflowers (Brassica oleracea L. ssp. <i>botrytis</i>). Journal of Agricultural and Food Chemistry, 2013, 61, 6999-7007.	2.4	55
23	Differential stress-response expression of two flavonol synthase genes and accumulation of flavonols in tartary buckwheat. Journal of Plant Physiology, 2013, 170, 1630-1636.	1.6	54
24	Differential Expression of Anthocyanin Biosynthetic Genes and Anthocyanin Accumulation in Tartary Buckwheat Cultivars â€~Hokkai T8' and â€~Hokkai T10'. Journal of Agricultural and Food Chemistry, 2011, 2356-2361.	5294	52
25	Accumulation of Phenylpropanoids and Correlated Gene Expression during the Development of Tartary Buckwheat Sprouts. Journal of Agricultural and Food Chemistry, 2012, 60, 5629-5635.	2.4	52
26	Enhanced Accumulation of Phytosterol and Triterpene in Hairy Root Cultures of Platycodon grandiflorum by Overexpression of Panax ginseng 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase. Journal of Agricultural and Food Chemistry, 2013, 61, 1928-1934.	2.4	52
27	Growth and Rutin Production in Hairy Root Cultures of Buckwheat (Fagopyrum esculentumM.). Preparative Biochemistry and Biotechnology, 2007, 37, 239-246.	1.0	51
28	Enhancement of flavone levels through overexpression of chalcone isomerase in hairy root cultures of Scutellaria baicalensis. Functional and Integrative Genomics, 2011, 11, 491-496.	1.4	51
29	In Vitro Antioxidant and Antimicrobial Properties of Flower, Leaf, and Stem Extracts of Korean Mint. Antioxidants, 2019, 8, 75.	2.2	51
30	Rosmarinic acid production in hairy root cultures of Agastache rugosa Kuntze. World Journal of Microbiology and Biotechnology, 2008, 24, 969-972.	1.7	50
31	Accumulation of Anthocyanin and Associated Gene Expression in Radish Sprouts Exposed to Light and Methyl Jasmonate. Journal of Agricultural and Food Chemistry, 2013, 61, 4127-4132.	2.4	50
32	Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudate. Pest Management Science, 2014, 70, 252-257.	1.7	49
33	Yeast Extract and Silver Nitrate Induce the Expression of Phenylpropanoid Biosynthetic Genes and Induce the Accumulation of Rosmarinic Acid in Agastache rugosa Cell Culture. Molecules, 2016, 21, 426.	1.7	49
34	De novo transcriptome analysis and glucosinolate profiling in watercress (Nasturtium officinale R.) Tj ETQq0 0 0 rg	,BT /Overlc	›දፄ 10 Tf 50
35	Effects of Light-Emitting Diodes on the Accumulation of Glucosinolates and Phenolic Compounds in Sprouting Canola (Brassica napus L.). Foods, 2019, 8, 76.	1.9	49
36	Production of phenolic compounds in hairy root culture of tartary buckwheat (Fagopyrum tataricum) Tj ETQq0 0 C	rgBT /Ov€	erlock 10 Tf

3

#	Article	IF	CITATIONS
37	Ginsenoside content of berries and roots of three typical Korean ginseng (Panax ginseng) cultivars. Natural Product Communications, 2009, 4, 903-6.	0.2	47
38	Effects of cold stress on transcripts and metabolites in tartary buckwheat (Fagopyrum tataricum). Environmental and Experimental Botany, 2018, 155, 488-496.	2.0	43
39	Identification of phenylpropanoid biosynthetic genes and phenylpropanoid accumulation by transcriptome analysis of Lycium chinense. BMC Genomics, 2013, 14, 802.	1.2	42
40	Accumulation of Carotenoids and Metabolic Profiling in Different Cultivars of Tagetes Flowers. Molecules, 2017, 22, 313.	1.7	42
41	Transcriptome Analysis and Metabolic Profiling of Lycoris Radiata. Biology, 2019, 8, 63.	1.3	42
42	Accumulation of Phenylpropanoids by White, Blue, and Red Light Irradiation and Their Organ-Specific Distribution in Chinese Cabbage (<i>Brassica rapa</i> ssp. <i>pekinensis</i>). Journal of Agricultural and Food Chemistry, 2015, 63, 6772-6778.	2.4	41
43	Metabolic Profiling in Chinese Cabbage (<i>Brassica rapa</i> L. subsp. <i>pekinensis</i>) Cultivars Reveals that Glucosinolate Content Is Correlated with Carotenoid Content. Journal of Agricultural and Food Chemistry, 2016, 64, 4426-4434.	2.4	41
44	Influence of Indole-3-Acetic Acid and Gibberellic Acid on Phenylpropanoid Accumulation in Common Buckwheat (Fagopyrum esculentum Moench) Sprouts. Molecules, 2017, 22, 374.	1.7	40
45	Enhancement of Anti-Inflammatory Activity of Aloe vera Adventitious Root Extracts through the Alteration of Primary and Secondary Metabolites via Salicylic Acid Elicitation. PLoS ONE, 2013, 8, e82479.	1.1	40
46	An update on biosynthesis and regulation of carotenoids in plants. South African Journal of Botany, 2021, 140, 290-302.	1.2	39
47	An efficient protocol for genetic transformation of watercress (Nasturtium officinale) using Agrobacterium rhizogenes. Molecular Biology Reports, 2011, 38, 4947-4953.	1.0	38
48	Metabolomic Analysis and Phenylpropanoid Biosynthesis in Hairy Root Culture of Tartary Buckwheat Cultivars. PLoS ONE, 2013, 8, e65349.	1.1	38
49	Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (<i>Morus alba</i> L.). Journal of Agricultural and Food Chemistry, 2015, 63, 8622-8630.	2.4	38
50	Physiological Roles of Rutin in the Buckwheat Plant. Japan Agricultural Research Quarterly, 2015, 49, 37-43.	0.1	37
51	Identification, isolation and expression analysis of eight stress-related R2R3-MYB genes in tartary buckwheat (Fagopyrum tataricum). Plant Cell Reports, 2016, 35, 1385-1396.	2.8	37
52	Influence of Chitosan, Salicylic Acid and Jasmonic Acid on Phenylpropanoid Accumulation in Germinated Buckwheat (Fagopyrum esculentum Moench). Foods, 2019, 8, 153.	1.9	37
53	Triterpene and Flavonoid Biosynthesis and Metabolic Profiling of Hairy Roots, Adventitious Roots, and Seedling Roots of <i>Astragalus membranaceus</i> . Journal of Agricultural and Food Chemistry, 2015, 63, 8862-8869.	2.4	36
54	Enhancement of rutin in Fagopyrum esculentum hairy root cultures by the Arabidopsis transcription factor AtMYB12. Biotechnology Letters, 2012, 34, 577-583.	1.1	35

#	Article	IF	CITATIONS
55	Metabolic Profiling of Nine Mentha Species and Prediction of Their Antioxidant Properties Using Chemometrics. Molecules, 2019, 24, 258.	1.7	35
56	Enhancement of the flavone contents of Scutellaria baicalensis hairy roots via metabolic engineering using maize Lc and Arabidopsis PAP1 transcription factors. Metabolic Engineering, 2021, 64, 64-73.	3.6	35
57	LED Lights Enhance Metabolites and Antioxidants in Chinese Cabbage and Kale. Brazilian Archives of Biology and Technology, 2016, 59, .	0.5	34
58	Phenolic compound profiles and their seasonal variations in new red-phenotype head-forming Chinese cabbages. LWT - Food Science and Technology, 2018, 90, 433-439.	2.5	34
59	Comparative Analysis of Flavonoids and Polar Metabolite Profiling of Tanno-Original and Tanno-High Rutin Buckwheat. Journal of Agricultural and Food Chemistry, 2014, 62, 2701-2708.	2.4	32
60	Molecular Cloning and Characterization of Phenylalanine Ammonia-lyase and Cinnamate 4-Hydroxylase in the Phenylpropanoid Biosynthesis Pathway in Garlic (Allium sativum). Journal of Agricultural and Food Chemistry, 2010, 58, 10911-10917.	2.4	31
61	Differentiated cuticular wax content and expression patterns of cuticular wax biosynthetic genes in bloomed and bloomless broccoli (Brassica oleracea var. italica). Process Biochemistry, 2015, 50, 456-462.	1.8	31
62	Metabolic profiling of pale green and purple kohlrabi (Brassica oleracea var. gongylodes). Applied Biological Chemistry, 2017, 60, 249-257.	0.7	31
63	Analysis of Metabolites in White Flowers of Magnolia Denudata Desr. and Violet Flowers of Magnolia Liliiflora Desr Molecules, 2018, 23, 1558.	1.7	31
64	Enhancing Sorgoleone Levels in Grain Sorghum Root Exudates. Journal of Chemical Ecology, 2010, 36, 914-922.	0.9	30
65	Comparative Metabolic Profiling of Green and Purple Pakchoi (Brassica Rapa Subsp. Chinensis). Molecules, 2018, 23, 1613.	1.7	30
66	Effects of LED lights on Expression of Genes Involved in Phenylpropanoid Biosynthesis and Accumulation of Phenylpropanoids in Wheat Sprout. Agronomy, 2019, 9, 307.	1.3	30
67	Metabolite Profiling and Comparative Analysis of Secondary Metabolites in Chinese Cabbage, Radish, and Hybrid <i>xBrassicoraphanus</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 13711-13719.	2.4	30
68	Molecular characterisation and the light–dark regulation of carotenoid biosynthesis in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.). Food Chemistry, 2013, 141, 3803-3812.	4.2	29
69	Influence of Light on the Free Amino Acid Content and γ-Aminobutyric Acid Synthesis in Brassica juncea Seedlings. Journal of Agricultural and Food Chemistry, 2013, 61, 8624-8631.	2.4	29
70	Metabolic Differentiation of Diamondback Moth (Plutella xylostella (L.)) Resistance in Cabbage (Brassica oleracea L. ssp. <i>capitata</i>). Journal of Agricultural and Food Chemistry, 2013, 61, 11222-11230.	2.4	28
71	Identification and quantification of carotenoids in paprika fruits and cabbage, kale, and lettuce leaves. Journal of the Korean Society for Applied Biological Chemistry, 2014, 57, 355-358.	0.9	28
72	Far infrared irradiation alters total polyphenol, total flavonoid, antioxidant property and quercetin production in tartary buckwheat sprout powder. Journal of Cereal Science, 2014, 59, 167-172.	1.8	28

#	Article	IF	CITATIONS
73	Medically important carotenoids from Momordica charantia and their gene expressions in different organs. Saudi Journal of Biological Sciences, 2017, 24, 1913-1919.	1.8	28
74	Molecular characterization of anthocyanin and betulinic acid biosynthesis in red and white mulberry fruits using high-throughput sequencing. Food Chemistry, 2019, 279, 364-372.	4.2	28
75	Effect of Salinity Stress on Phenylpropanoid Genes Expression and Related Gene Expression in Wheat Sprout. Agronomy, 2020, 10, 390.	1.3	28
76	Comparative Analysis of Secondary Metabolites and Metabolic Profiling between Diploid and Tetraploid <i>Morus alba</i> L Journal of Agricultural and Food Chemistry, 2021, 69, 1300-1307.	2.4	28
77	Metabolomic Analysis and Differential Expression of Anthocyanin Biosynthetic Genes in White- and Red-Flowered Buckwheat Cultivars (Fagopyrum esculentum). Journal of Agricultural and Food Chemistry, 2013, 61, 10525-10533.	2.4	27
78	Enhancement of Chlorogenic Acid Production in Hairy Roots of Platycodon grandiflorum by Over-Expression of An Arabidopsis thaliana Transcription Factor AtPAP1. International Journal of Molecular Sciences, 2014, 15, 14743-14752.	1.8	27
79	Comparative analysis of flavonoids and polar metabolites from hairy roots of Scutellaria baicalensis and Scutellaria lateriflora. World Journal of Microbiology and Biotechnology, 2014, 30, 887-892.	1.7	27
80	Metabolic profiling and antioxidant activity during flower development in Agastache rugosa. Physiology and Molecular Biology of Plants, 2021, 27, 445-455.	1.4	27
81	Influence of light-emitting diodes on phenylpropanoid biosynthetic gene expression and phenylpropanoid accumulation in Agastache rugosa. Applied Biological Chemistry, 2020, 63, .	0.7	27
82	Age-dependent Distribution of Fungal Endophytes in Panax ginseng Roots Cultivated in Korea. Journal of Ginseng Research, 2012, 36, 327-333.	3.0	27
83	Comparative Phytochemical Analyses and Metabolic Profiling of Different Phenotypes of Chinese Cabbage (Brassica Rapa ssp. Pekinensis). Foods, 2019, 8, 587.	1.9	26
84	Cloning and Characterization of Phenylalanine Ammonia-Lyase and Cinnamate 4-Hydroxylase and Pyranocoumarin Biosynthesis in <i>Angelica gigas</i> . Journal of Natural Products, 2010, 73, 1394-1397.	1.5	25
85	Overexpression of phenylalanine ammonia-lyase improves flavones production in transgenic hairy root cultures of Scutellaria baicalensis. Process Biochemistry, 2012, 47, 2575-2580.	1.8	25
86	Metabolomics for the Quality Assessment of <i>Lycium chinense</i> Fruits. Bioscience, Biotechnology and Biochemistry, 2012, 76, 2188-2194.	0.6	24
87	Regulation of the major vacuolar Ca2+ transporter genes, by intercellular Ca2+ concentration and abiotic stresses, in tip-burn resistant Brassica oleracea. Molecular Biology Reports, 2013, 40, 177-188.	1.0	24
88	Determination of lipophilic metabolites for species discrimination and quality assessment of nine leafy vegetables. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58, 909-918.	0.9	24
89	Fungal Endophytes from Three Cultivars of Panax ginseng Meyer Cultivated in Korea. Journal of Ginseng Research, 2012, 36, 107-113.	3.0	23
90	Effects of Light-Emitting Diodes on the Accumulation of Phenolic Compounds and Glucosinolates in Brassica juncea Sprouts. Horticulturae, 2020, 6, 77.	1.2	23

Sang Un Park

#	Article	IF	CITATIONS
91	Accumulation of Anthocyanins through Overexpression of AtPAP1 in Solanum nigrum Lin. (Black) Tj ETQq1 1 0.78	4314 rgB1 1.8	7 / Gverlock
92	Biological activity of various radish species. Oriental Pharmacy and Experimental Medicine, 2015, 15, 105-111.	1.2	22
93	Molecular cloning and characterization of rosmarinic acid biosynthetic genes and rosmarinic acid accumulation in Ocimum basilicum L. Saudi Journal of Biological Sciences, 2019, 26, 469-472.	1.8	22
94	Metabolic Profiling-Based Evaluation of the Fermentative Behavior of Aspergillus oryzae and Bacillus subtilis for Soybean Residues Treated at Different Temperatures. Foods, 2020, 9, 117.	1.9	22
95	Recent studies on rosmarinic acid and its biological and pharmacological activities. EXCLI Journal, 2014, 13, 1192-5.	0.5	22
96	Effects of Jasmonates on Sorgoleone Accumulation and Expression of Genes for Sorgoleone Biosynthesis in Sorghum Roots. Journal of Chemical Ecology, 2013, 39, 712-722.	0.9	21
97	Red Chinese Cabbage Transcriptome Analysis Reveals Structural Genes and Multiple Transcription Factors Regulating Reddish Purple Color. International Journal of Molecular Sciences, 2020, 21, 2901.	1.8	21
98	Yeast extract improved biosynthesis of astragalosides in hairy root cultures of <i>Astragalus membranaceus</i> . Preparative Biochemistry and Biotechnology, 2021, 51, 467-474.	1.0	21
99	Metabolomic analysis reveals the interaction of primary and secondary metabolism in white, pale green, and green pak choi (Brassica rapa subsp. chinensis). Applied Biological Chemistry, 2021, 64, .	0.7	21
100	Profiles of Secondary Metabolites (Phenolic Acids, Carotenoids, Anthocyanins, and Galantamine) and Primary Metabolites (Carbohydrates, Amino Acids, and Organic Acids) during Flower Development in Lycoris radiata. Biomolecules, 2021, 11, 248.	1.8	21
101	Transcriptional Profiling and Molecular Characterization of Astragalosides, Calycosin, and Calycosin-7- <i>O</i> -î ² - <scp>d</scp> -glucoside Biosynthesis in the Hairy Roots of <i>Astragalus membranaceus</i> in Response to Methyl Jasmonate. Journal of Agricultural and Food Chemistry, 2015, 63 6231-6240	2.4	20
102	A Comparative Study of Phenolic Antioxidant Activity and Flavonoid Biosynthesisâ€Related Gene Expression Between Summer and Winter Strawberry Cultivars. Journal of Food Science, 2017, 82, 341-349.	1.5	20
103	Metabolomic Profiling of the White, Violet, and Red Flowers of Rhododendron schlippenbachii Maxim Molecules, 2018, 23, 827.	1.7	20
104	Accumulation of Flavonoids and Related Gene Expressions in Different Organs of Astragalus membranaceus Bge. Applied Biochemistry and Biotechnology, 2014, 173, 2076-2085.	1.4	19
105	Molecular Cloning and Characterization of Genes Involved in Rosmarinic Acid Biosynthesis from <i>Prunella vulgaris</i> . Biological and Pharmaceutical Bulletin, 2014, 37, 1221-1227.	0.6	19
106	Fagopyrum tataricum FtWD40 Functions as a Positive Regulator of Anthocyanin Biosynthesis in Transgenic Tobacco. Journal of Plant Growth Regulation, 2017, 36, 755-765.	2.8	19
107	Molecular characterization of flavonoid biosynthetic genes and accumulation of baicalin, baicalein, and wogonin in plant and hairy root of Scutellaria lateriflora. Saudi Journal of Biological Sciences, 2018, 25, 1639-1647.	1.8	19
108	Carotenoid Accumulation and Characterization of cDNAs Encoding Phytoene Synthase and Phytoene Desaturase in Garlic (<i>Allium sativum</i>). Journal of Agricultural and Food Chemistry, 2011, 59, 5412-5417.	2.4	18

#	Article	IF	CITATIONS
109	Overexpression of Cinnamate 4-Hydroxylase Gene Enhances Biosynthesis of Decursinol Angelate in Angelica gigas Hairy Roots. Molecular Biotechnology, 2012, 50, 114-120.	1.3	18
110	Characterization of Genes for a Putative Hydroxycinnamoyl-coenzyme A Quinate Transferase and <i>p</i> -Coumarate 3′-Hydroxylase and Chlorogenic Acid Accumulation in Tartary Buckwheat. Journal of Agricultural and Food Chemistry, 2013, 61, 4120-4126.	2.4	18
111	Accumulation of Phenylpropanoids and Correlated Gene Expression in Hairy Roots of Tartary Buckwheat under Light and Dark Conditions. Applied Biochemistry and Biotechnology, 2014, 174, 2537-2547.	1.4	18
112	Ginseng: a miracle sources of herbal and pharmacological uses. Oriental Pharmacy and Experimental Medicine, 2016, 16, 243-250.	1.2	18
113	Accumulation of Charantin and Expression of Triterpenoid Biosynthesis Genes in Bitter Melon (<i>Momordica charantia</i>). Journal of Agricultural and Food Chemistry, 2017, 65, 7240-7249.	2.4	18
114	Transcriptome Analysis and Metabolic Profiling of Green and Red Mizuna (Brassica rapa L. var.) Tj ETQq0 0 0 rg	BT /Qyerloc	k 10 Tf 50 54
115	Production of rosmarinic acid and correlated gene expression in hairy root cultures of green and purple basil (<i>Ocimum basilicum</i> L.). Preparative Biochemistry and Biotechnology, 2021, 51, 35-43.	1.0	18
116	Metabolite Profiling Reveals Distinct Modulation of Complex Metabolic Networks in Non-Pigmented, Black, and Red Rice (Oryza sativa L.) Cultivars. Metabolites, 2021, 11, 367.	1.3	18
117	Molecular Characterization of Carotenoid Cleavage Dioxygenases and the Effect of Gibberellin, Abscisic Acid, and Sodium Chloride on the Expression of Genes Involved in the Carotenoid Biosynthetic Pathway and Carotenoid Accumulation in the Callus of Scutellaria baicalensis Georgi. Journal of Agricultural and Food Chemistry, 2013, 61, 5565-5572.	2.4	17
118	Accumulation of Kaempferitrin and Expression of Phenyl-Propanoid Biosynthetic Genes in Kenaf (Hibiscus cannabinus). Molecules, 2014, 19, 16987-16997.	1.7	17
119	Accumulation of Astragalosides and Related Gene Expression in Different Organs of Astragalus Membranaceus Bge. var Mongholicus (Bge.). Molecules, 2014, 19, 10922-10935.	1.7	17
120	Riboflavin Accumulation and Molecular Characterization of cDNAs Encoding Bifunctional GTP Cyclohydrolase II/3,4-Dihydroxy-2-Butanone 4-Phosphate Synthase, Lumazine Synthase, and Riboflavin Synthase in Different Organs of Lycium chinense Plant. Molecules, 2014, 19, 17141-17153.	1.7	17
121	Accumulation of anthocyanin and related genes expression during the development of cabbage seedlings. Process Biochemistry, 2014, 49, 1084-1091.	1.8	17
122	Metabolomics of differently colored Gladiolus cultivars. Applied Biological Chemistry, 2016, 59, 597-607.	0.7	17
123	Transcriptome and metabolome analysis in shoot and root of Valeriana fauriei. BMC Genomics, 2016, 17, 303.	1.2	17
124	Carotenoid Biosynthesis in Oriental Melon (Cucumis melo L. var. makuwa). Foods, 2019, 8, 77.	1.9	17
125	Enhancement of Glucosinolate Production in Watercress (Nasturtium officinale) Hairy Roots by Overexpressing Cabbage Transcription Factors. Journal of Agricultural and Food Chemistry, 2019, 67, 4860-4867.	2.4	17
126	Analysis of carotenoid accumulation and expression of carotenoid biosynthesis genes in different organs of Chinese cabbage (Brassica rapa subsp. pekinensis). EXCLI Journal, 2012, 11, 508-16.	0.5	17

#	Article	IF	CITATIONS
127	Phenolic Compound Content in Different Organs of Korean Common Buckwheat Cultivars. Asian Journal of Chemistry, 2013, 25, 424-426.	0.1	16
128	Targeted metabolite profiling to evaluate unintended metabolic changes of genetic modification in resveratrol-enriched rice (Oryza sativa L.). Applied Biological Chemistry, 2017, 60, 205-214.	0.7	16
129	Molecular characterization of glucosinolates and carotenoid biosynthetic genes in Chinese cabbage () Tj ETQq1 1	0,784314 1.8	rgBT /Overl
130	Metabolite Profiling and Chemometric Study for the Discrimination Analyses of Geographic Origin of Perilla (Perilla frutescens) and Sesame (Sesamum indicum) Seeds. Foods, 2020, 9, 989.	1.9	16
131	Effect of Light and Dark on the Phenolic Compound Accumulation in Tartary Buckwheat Hairy Roots Overexpressing ZmLC. International Journal of Molecular Sciences, 2021, 22, 4702.	1.8	16
132	An efficient protocol for genetic transformation of Platycodon grandiflorum with Agrobacterium rhizogenes. Molecular Biology Reports, 2011, 38, 2307-2313.	1.0	15
133	Identification and Characterization of Phenylpropanoid Biosynthetic Genes and Their Accumulation in Bitter Melon (Momordica charantia). Molecules, 2018, 23, 469.	1.7	15
134	Integrated Proteomics and Metabolomics Analysis Highlights Correlative Metabolite-Protein Networks in Soybean Seeds Subjected to Warm-Water Soaking. Journal of Agricultural and Food Chemistry, 2020, 68, 8057-8067.	2.4	15
135	Variation of glucosinolate accumulation and gene expression of transcription factors at different stages of Chinese cabbage seedlings under light and dark conditions. Natural Product Communications, 2014, 9, 533-7.	0.2	15
136	Influence of Auxins on Glucosinolate Biosynthesis in Hairy Root Cultures of Broccoli (Brassica) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 382 14
137	Chemical Compositions of the Volatile Oils and Antibacterial Screening of Solvent Extract from Downy Lavender. Foods, 2019, 8, 132.	1.9	14
138	Production of Flavonoids in Callus Cultures of Sophora flavescens Aiton. Plants, 2020, 9, 688.	1.6	14
139	FtBPM3 modulates the orchestration of FtMYB11â€mediated flavonoids biosynthesis in Tartary buckwheat. Plant Biotechnology Journal, 2021, 19, 1285-1287.	4.1	14
140	Cloning and characterization of indole synthase (INS) and a putative tryptophan synthase α-subunit (TSA) genes from Polygonum tinctorium. Plant Cell Reports, 2016, 35, 2449-2459.	2.8	13
141	Metabolic Analysis of Four Cultivars of Liriope platyphylla. Metabolites, 2019, 9, 59.	1.3	13
142	The Effect of Different Drying Methods on Primary and Secondary Metabolites in Korean Mint Flower. Agronomy, 2021, 11, 698.	1.3	13
143	Accumulation of flavonoids and expression of flavonoid biosynthetic genes in tartary and rice-tartary buckwheat. Process Biochemistry, 2012, 47, 2306-2310.	1.8	12
144	Chemical Composition of Essential Oils from Flower and Leaf of Korean Mint, Agastache rugosa. Asian Journal of Chemistry, 2013, 25, 4361-4363.	0.1	12

#	Article	IF	CITATIONS
145	Ethephon-induced phenylpropanoid accumulation and related gene expression in tartary buckwheat (<i>Fagopyrum tataricum</i> (L.) Gaertn.) hairy root. Biotechnology and Biotechnological Equipment, 2017, 31, 304-311.	0.5	12
146	Expression levels of carotenoid biosynthetic genes and carotenoid production in the callus of scutellaria baicalensis exposed to white, blue, and red light-emitting diodes. Applied Biological Chemistry, 2017, 60, 591-596.	0.7	12
147	Integrated Analysis of Transcriptome and Metabolome and Evaluation of Antioxidant Activities in Lavandula pubescens. Antioxidants, 2021, 10, 1027.	2.2	12
148	Variation of Glucosinolate Accumulation and Gene Expression of Transcription Factors at Different Stages of Chinese Cabbage Seedlings under Light and Dark Conditions. Natural Product Communications, 2014, 9, 1934578X1400900.	0.2	11
149	Comparison of Different Strains of <i>Agrobacterium rhizogenes</i> for Hairy Root Induction and Betulin and Betulinic Acid Production in <i>Morus alba</i> . Natural Product Communications, 2017, 12, 1934578X1701200.	0.2	11
150	Glucosinolate biosynthesis in hairy root cultures of broccoli (Brassica oleracea var. italica). Natural Product Communications, 2013, 8, 217-20.	0.2	11
151	Molecular cloning and characterization of cDNAs encoding carotenoid cleavage dioxygenase in bitter melon (Momordica charantia). Journal of Plant Physiology, 2013, 170, 115-120.	1.6	10
152	Cloning and Characterization of a Flavonol Synthase Gene from <i>Scutellaria baicalensis</i> . Scientific World Journal, The, 2014, 2014, 1-7.	0.8	10
153	Molecular Characterization of Carotenoid Biosynthetic Genes and Carotenoid Accumulation in Lycium chinense. Molecules, 2014, 19, 11250-11262.	1.7	10
154	Molecular cloning and characterization of mevalonic acid (MVA) pathway genes and triterpene accumulation in Panax ginseng. Journal of the Korean Society for Applied Biological Chemistry, 2014, 57, 289-295.	0.9	10
155	Influence of Different Carbohydrates on Flavonoid Accumulation in Hairy Root Cultures of Scutellaria baicalensis. Natural Product Communications, 2016, 11, 1934578X1601100.	0.2	10
156	Determination and quantification of arbutin in plants using stable isotope dilution liquid chromatography–mass spectrometry. Applied Biological Chemistry, 2018, 61, 523-530.	0.7	10
157	Accumulation of Phenylpropanoids in Tartary Buckwheat (Fagopyrum tataricum) under Salt Stress. Agronomy, 2019, 9, 739.	1.3	10
158	Enhancement of phenylpropanoid accumulation in tartary buckwheat hairy roots by overexpression of MYB transcription factors. Industrial Crops and Products, 2020, 156, 112887.	2.5	10
159	Transcriptomic Analysis, Cloning, Characterization, and Expression Analysis of Triterpene Biosynthetic Genes and Triterpene Accumulation in the Hairy Roots of Platycodon grandiflorum Exposed to Methyl Jasmonate. ACS Omega, 2021, 6, 12820-12830.	1.6	10
160	Molecular characterization of carotenoid biosynthetic genes and carotenoid accumulation in Scutellaria baicalensis Georgi. EXCLI Journal, 2015, 14, 146-57.	0.5	10
161	Overexpression of cinnamate 4-hydroxylase and 4-coumaroyl CoA ligase prompted flavone accumulation in Scutellaria baicalensis hairy roots. Natural Product Communications, 2014, 9, 803-7.	0.2	10
162	Application of Fourier Transform Infrared Spectroscopy and Multivariate Analysis Methods for the Non-Destructive Evaluation of Phenolics Compounds in Moringa Powder. Agriculture (Switzerland), 2022, 12, 10.	1.4	10

#	Article	IF	CITATIONS
163	Comparative Determination of Phenolic Compounds in Arabidopsis thaliana Leaf Powder under Distinct Stress Conditions Using Fourier-Transform Infrared (FT-IR) and Near-Infrared (FT-NIR) Spectroscopy. Plants, 2022, 11, 836.	1.6	10
164	Methyl Jasmonate- and Light-Induced Glucosinolate and Anthocyanin Biosynthesis in Radish Seedlings. Natural Product Communications, 2015, 10, 1934578X1501000.	0.2	9
165	Effect of Auxins on Anthocyanin Accumulation in Hairy Root Cultures of Tartary Buckwheat Cultivar Hokkai T10. Natural Product Communications, 2016, 11, 1934578X1601100.	0.2	9
166	Intracellular Ca2+ and K+ concentration in Brassica oleracea leaf induces differential expression of transporter and stress-related genes. BMC Genomics, 2016, 17, 211.	1.2	9
167	Metabolic Profiling and Chemical-Based Antioxidant Assays of Green and Red Lettuce (Lactuca sativa). Natural Product Communications, 2018, 13, 1934578X1801300.	0.2	9
168	Profiling of the Major Phenolic Compounds and Their Biosynthesis Genes in <i> Sophora flavescens</i> Aiton. Scientific World Journal, The, 2018, 2018, 1-9.	0.8	9
169	Anticancer compounds from plants. EXCLI Journal, 2012, 11, 386-9.	0.5	9
170	Expression Analysis of Phenylpropanoid Pathway Genes and Metabolomic Analysis of Phenylpropanoid Compounds in Adventitious, Hairy, and Seedling Roots of Tartary Buckwheat. Plants, 2022, 11, 90.	1.6	9
171	Variation of Charantin Content in Different Bitter Melon Cultivars. Asian Journal of Chemistry, 2014, 26, 309-310.	0.1	8
172	Overexpression of Cinnamate 4-Hydroxylase and 4-Coumaroyl CoA Ligase Prompted Flavone Accumulation in Scutellaria baicalensis Hairy Roots. Natural Product Communications, 2014, 9, 1934578X1400900.	0.2	8
173	Expression of Terpenoid Biosynthetic Genes and Accumulation of Chemical Constituents in Valeriana fauriei. Molecules, 2016, 21, 691.	1.7	8
174	Expression of Genes Related to Phenylpropanoid Biosynthesis in Different Organs of Ixeris dentata var. albiflora. Molecules, 2017, 22, 901.	1.7	8
175	Metabolic Analysis of <i>Vigna unguiculata</i> Sprouts Exposed to Different Light-Emitting Diodes. Natural Product Communications, 2018, 13, 1934578X1801301.	0.2	8
176	Comparative analysis of glucosinolates and metabolite profiling of green and red mustard (brassica) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 5
177	Dynamics of Short-Term Metabolic Profiling in Radish Sprouts (Raphanus sativus L.) in Response to Nitrogen Deficiency. Plants, 2019, 8, 361.	1.6	8
178	Metabolic Analysis of Root, Stem, and Leaf of Scutellaria baicalensis Plantlets Treated with Different LED Lights. Plants, 2021, 10, 940.	1.6	8
179	Recent studies on resveratrol and its biological and pharmacological activity. EXCLI Journal, 2017, 16, 602-608.	0.5	8
180	Influence of Different Carbohydrates on Flavonoid Accumulation in Hairy Root Cultures of Scutellaria baicalensis. Natural Product Communications, 2016, 11, 799-802.	0.2	8

#	Article	IF	CITATIONS
181	Molecular Cloning and Characterization of Tyrosine Aminotransferase and Hydroxyphenylpyruvate Reductase, and Rosmarinic Acid Accumulation in Scutellaria baicalensis. Natural Product Communications, 2014, 9, 1934578X1400900.	0.2	7
182	Molecular Cloning and Characterization of Carotenoid Pathway Genes and Carotenoid Content in Ixeris dentata var. albiflora. Molecules, 2017, 22, 1449.	1.7	7
183	Quantification of Arbutin in Plant Extracts by Stable Isotope Dilution Gas Chromatography–Mass Spectrometry. Chromatographia, 2018, 81, 533-538.	0.7	7
184	Evaluation of Growth, Yield, and Biochemical Attributes of Bitter Gourd (Momordica charantia L.) Cultivars under Karaj Conditions in Iran. Plants, 2021, 10, 1370.	1.6	7
185	Optimization of a Cryopreservation Method for the Endangered Korean Species Pogostemon yatabeanus Using a Systematic Approach: The Key Role of Ammonium and Growth Regulators. Plants, 2021, 10, 2018.	1.6	7
186	Metabolomic Variability of Different Soybean Genotypes: β-Carotene-Enhanced (Glycine max), Wild (Glycine soja), and Hybrid (Glycine max × Glycine soja) Soybeans. Foods, 2021, 10, 2421.	1.9	7
187	Metabolic Profiling of White and Green Radish Cultivars (Raphanus sativus). Horticulturae, 2022, 8, 310.	1.2	7
188	Effects of Auxins on Sorgoleone Accumulation and Genes for Sorgoleone Biosynthesis in Sorghum Roots. Journal of Agricultural and Food Chemistry, 2011, 59, 12948-12953.	2.4	6
189	Sorgoleone, a sorghum root exudate: Algicidal activity and acute toxicity to the ricefish Oryzias latipes. Aquatic Botany, 2012, 98, 40-44.	0.8	6
190	Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat. Scientific World Journal, The, 2014, 2014, 1-10.	0.8	6
191	Elevated Ozone Levels Affect Metabolites and Related Biosynthetic Genes in Tartary Buckwheat. Journal of Agricultural and Food Chemistry, 2020, 68, 14758-14767.	2.4	6
192	Estimation of Glucosinolates and Anthocyanins in Kale Leaves Grown in a Plant Factory Using Spectral Reflectance. Horticulturae, 2021, 7, 56.	1.2	6
193	Recent studies on flavonoids and their antioxidant activities. EXCLI Journal, 2013, 12, 226-30.	0.5	6
194	Increased indigoid accumulation by plant defense activators in Polygonum tinctorium Lour Journal of the Korean Society for Applied Biological Chemistry, 2012, 55, 359-362.	0.9	5
195	Characterization of cDNA Encoding Resveratrol Synthase and Accumulation of Resveratrol in Tartary Buckwheat. Natural Product Communications, 2013, 8, 1934578X1300801.	0.2	5
196	Metabolic profiling reveals glucose and fructose accumulation in gcr1 knock-out mutant of Arabidopsis. Applied Biological Chemistry, 2019, 62, .	0.7	5
197	Integrated Analysis of Transcriptome and Metabolome in <i>Cirsium japonicum</i> Fisch ex DC. ACS Omega, 2020, 5, 29312-29324.	1.6	5
198	Prediction of Dhurrin Metabolism by Transcriptome and Metabolome Analyses in Sorghum. Plants, 2020, 9, 1390.	1.6	5

#	Article	IF	CITATIONS
199	Improvement of Phenylpropanoid Production with Elicitor Treatments in Pimpinella brachycarpa Nakai. Horticulturae, 2020, 6, 108.	1.2	5
200	Impact of copper treatment on phenylpropanoid biosynthesis in adventitious root culture of <i>Althaea officinalis</i> L. Preparative Biochemistry and Biotechnology, 2022, 52, 283-291.	1.0	5
201	Comparison of Secondary Metabolite Contents and Metabolic Profiles of Six Lycoris Species. Horticulturae, 2021, 7, 5.	1.2	5
202	Production of Bacalin, Bacalein and Wogonin in Hairy Root Culture of American Skullcap (Scutellaria) Tj ETQqO O	0 rgBT /O 0:2	verlock 10 Tf
203	Metabolic profiling and antioxidant properties of hybrid soybeans with different seed coat colors, obtained by crossing β-carotene-enhanced (Glycine max) and wild (Glycine soja) soybeans. Plant Biotechnology Reports, 2022, 16, 449-463.	0.9	5
204	Riboflavin Accumulation and Characterization of cDNAs Encoding Lumazine Synthase and Riboflavin Synthase in Bitter Melon (Momordica charantia). Journal of Agricultural and Food Chemistry, 2012, 60, 11980-11986.	2.4	4
205	Improved quantification of γ-aminobutyric acid in rice using stable isotope dilution gas chromatography–mass spectrometry. Food Chemistry, 2018, 266, 375-380.	4.2	4
206	Estimation of functional components of Chinese cabbage leaves grown in a plant factory using diffuse reflectance spectroscopy. Journal of the Science of Food and Agriculture, 2019, 99, 711-718.	1.7	4
207	Comparative analysis of glucosinolate production in hairy roots of green and red kale (<i>Brassica) Tj ETQq1 1 0.</i>	784314 rg 1.0	;BT_/Overlock
208	Metabolic Profiling of Primary Metabolites and Galantamine Biosynthesis in Wounded Lycoris radiata Callus. Plants, 2020, 9, 1616.	1.6	4
209	Identification and analysis of phenylpropanoid biosynthetic genes and phenylpropanoid accumulation in watercress (Nasturtium officinale R. Br.). 3 Biotech, 2020, 10, 260.	1.1	4
210	Accumulation of Phenolic Compounds and Glucosinolates in Sprouts of Pale Green and Purple Kohlrabi (Brassica oleracea var. gongylodes) under Light and Dark Conditions. Agronomy, 2021, 11, 1939.	1.3	4
211	Characterization of cDNA encoding resveratrol synthase and accumulation of resveratrol in tartary buckwheat. Natural Product Communications, 2013, 8, 1571-4.	0.2	4
212	Comparison of Different Strains of Agrobacterium rhizogenes for Hairy Root Induction and Betulin and Betulin and Betulinic Acid Production in Morus alba. Natural Product Communications, 2017, 12, 479-482.	0.2	4
213	Identification, Characterization, and Expression Analysis of Carotenoid Biosynthesis Genes and Carotenoid Accumulation in Watercress (<i>Nasturtium officinale</i> R. Br.). ACS Omega, 2022, 7, 430-442.	1.6	4
214	Gene Expression and Metabolic Analyses of Nontransgenic and <i>AtPAP</i> 1 Transgenic Tobacco Infected with <i>Potato Virus X</i> (PVX). Journal of Agricultural and Food Chemistry, 2022, 70, 5838-5848.	2.4	4
215	Betaine Hydrochloride Treatment Affects Growth and Phenylpropanoid Accumulation in Tartary Buckwheat (Fagopyrum tataricum) Seedlings under Salt Stress. Agronomy, 2020, 10, 906.	1.3	3
216	Molecular Characterization of Terpenoid Biosynthetic Genes and Terpenoid Accumulation in Phlomis umbrosa Turczaninow. Horticulturae, 2020, 6, 76.	1.2	3

#	Article	IF	CITATIONS
217	Molecular Characterization, Expression Analysis of Carotenoid, Xanthophyll, Apocarotenoid Pathway Genes, and Carotenoid and Xanthophyll Accumulation in Chelidonium majus L Plants, 2021, 10, 1753.	1.6	3
218	Effect of cytokinins on growth and phenylpropanoid accumulation in Tartary buckwheat sprouts (Fagopyrum esculentum Moench). Journal of Aridland Agriculture, 0, , 89-94.	0.0	3
219	Location of Sampling Points in Optical Reflectance Measurements of Chinese Cabbage and Kale Leaves. Journal of Biosystems Engineering, 2015, 40, 115-123.	1.2	3
220	Identification, In Silico Characterization, and Differential Expression Profiles of Carotenoid, Xanthophyll, Apocarotenoid Biosynthetic Pathways Genes, and Analysis of Carotenoid and Xanthophyll Accumulation in Heracleum moellendorffii Hance. International Journal of Molecular Sciences, 2022, 23, 4845.	1.8	3
221	Resveratrol Production from Hairy Root Cultures of Scutellaria baicalensis. Natural Product Communications, 2013, 8, 1934578X1300800.	0.2	2
222	Subcellular Localization Studies of Three Phenylalanine Ammonia-Lyases and Cinnamate 4-Hydroxylase from <i>Scutellaria Baicalensis</i> Using GFP Fusion Proteins. OnLine Journal of Biological Sciences, 2015, 15, 70-73.	0.2	2
223	Expression of Carotenoid Biosynthetic Genes and Carotenoid Biosynthesis during Seedling Development of <i>Momordica charantia</i> . Natural Product Communications, 2018, 13, 1934578X1801300.	0.2	2
224	Investigations on Metabolic Changes in Beagle Dogs Fed Probiotic Queso Blanco Cheese and Identification of Candidate Probiotic Fecal Biomarkers Using Metabolomics Approaches. Metabolites, 2020, 10, 305.	1.3	2
225	Biosynthesis of phenylpropanoids and their protective effect against heavy metals in nitrogen-fixing black locust (<i>Robinia pseudoacacia</i>). Tropical Journal of Pharmaceutical Research, 2020, 19, 1065-1072.	0.2	2
226	Resveratrol Biosynthesis in Hairy Root Cultures of Tan and Purple Seed Coat Peanuts. Agronomy, 2021, 11, 975.	1.3	2
227	Targeted Metabolic and In-Silico Analyses Highlight Distinct Glucosinolates and Phenolics Signatures in Korean Rapeseed Cultivars. Plants, 2021, 10, 2027.	1.6	2
228	Number of sampling leaves for reflectance measurement of Chinese cabbage and kale. Korean Journal of Agricultural Science, 2014, 41, 169-175.	0.2	2
229	Determination of the sample number for optical reflectance measurement of vegetable leaf. Computers and Electronics in Agriculture, 2015, 112, 110-115.	3.7	1
230	Amino Acids Content in Different Korean Cultivars of Rapeseed (Brassica napus). Asian Journal of Chemistry, 2017, 29, 1423-1426.	0.1	1
231	Diosgenin Biosynthesis in the Sprouts of Fenugreek as Influenced by Chitosan. OnLine Journal of Biological Sciences, 2019, 19, 104-109.	0.2	1
232	Amino Acid Content in Different Cultivars of Liriope platyphylla. Asian Journal of Chemistry, 2016, 28, 1754-1756.	0.1	1
233	An endophyte Paenibacillus dendritiformis strain APL3 promotes Amaranthus polygonoides L. sprout growth and their extract inhibits food-borne pathogens. Plant Science Today, 2021, 8, .	0.4	1
234	EST sequencing and gene expression profiling in Scutellaria baicalensis. EXCLI Journal, 2014, 13, 392-400.	0.5	1

#	Article	IF	CITATIONS
235	Flavonoids for treatment of Alzheimer's disease: An up to date review. EXCLI Journal, 2021, 20, 495-502.	0.5	1
236	Recent studies on pinene and its biological and pharmacological activities. EXCLI Journal, 2021, 20, 812-818.	0.5	1
237	Enhancing Astragaloside Production in Astragalus membranaceus through Growth Media and Auxins. OnLine Journal of Biological Sciences, 2018, 18, 116-122.	0.2	0
238	Applications of Plant Tissue Culture and Biotechnology in Buckwheat. , 2018, , 333-341.		0
239	Metabolic Analysis of Carotenoids and Phenolic Compounds Found in Green and Purple Kenaf. Natural Product Communications, 2020, 15, 1934578X2097113.	0.2	0
240	Blue and White LED Lights Enhance Biosynthesis of Rosmarinic Acid in Cell Culture of Agastache rugosa. OnLine Journal of Biological Sciences, 2020, 20, 107-114.	0.2	0
241	Impact of Betaine Under Salinity on Accumulation of Phenolic Compounds in Safflower (<i>Carthamus tinctorius</i> L.) Sprouts. Natural Product Communications, 2021, 16, 1934578X2110150.	0.2	0
242	Improved annotation and quantification of metabolites in rice (Oryza sativa L.) seeds using two-dimensional gas chromatography–time-of-flight mass spectrometry. Applied Biological Chemistry, 2021, 64, .	0.7	0
243	Influence of Endophytic Bacterium, Cellulosimicrobium sp. FRR2 on Plant Growth of Amaranthus campestris L. and Bacterial Survival at Adverse Environmental Conditions. Journal of Pure and Applied Microbiology, 2021, 15, 2288-2294.	0.3	0
244	Effects of light conditions on growth and glucosinolate content of Chinese cabbage grown in a plant factory. Acta Horticulturae, 2022, , 171-178.	0.1	0