Shai Morin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8213730/publications.pdf Version: 2024-02-01

SHALMORIN

#	Article	IF	CITATIONS
1	The molecular mechanisms that determine different degrees of polyphagy in the <i>Bemisia tabaci</i> species complex. Evolutionary Applications, 2021, 14, 807-820.	1.5	12
2	Decision support for pest management: Using field data for optimizing temperature-dependent population dynamics models. Ecological Modelling, 2021, 440, 109402.	1.2	3
3	Activation and detoxification of cassava cyanogenic glucosides by the whitefly Bemisia tabaci. Scientific Reports, 2021, 11, 13244.	1.6	17
4	Inside out: microbiota dynamics during host-plant adaptation of whiteflies. ISME Journal, 2020, 14, 847-856.	4.4	48
5	Can CRISPR gene drive work in pest and beneficial haplodiploid species?. Evolutionary Applications, 2020, 13, 2392-2403.	1.5	20
6	Glucosylation prevents plant defense activation in phloem-feeding insects. Nature Chemical Biology, 2020, 16, 1420-1426.	3.9	30
7	<i>Portiera</i> Gets Wild: Genome Instability Provides Insights into the Evolution of Both Whiteflies and Their Endosymbionts. Genome Biology and Evolution, 2020, 12, 2107-2124.	1.1	14
8	Molecular Evolution of the Glutathione S-Transferase Family in the Bemisia tabaci Species Complex. Genome Biology and Evolution, 2020, 12, 3857-3872.	1.1	17
9	Complete Assembly of the Genome of an Acidovorax citrulli Strain Reveals a Naturally Occurring Plasmid in This Species. Frontiers in Microbiology, 2019, 10, 1400.	1.5	11
10	To B or Not to B: Comparative Genomics Suggests Arsenophonus as a Source of B Vitamins in Whiteflies. Frontiers in Microbiology, 2018, 9, 2254.	1.5	49
11	Speciesâ€complex diversification and hostâ€plant associations in <i>Bemisia tabaci</i> : A plantâ€defence, detoxification perspective revealed by <scp>RNA</scp> â€Seq analyses. Molecular Ecology, 2018, 27, 4241-4256.	2.0	39
12	Targeting detoxification genes by phloem-mediated RNAi: A new approach for controlling phloem-feeding insect pests. Insect Biochemistry and Molecular Biology, 2018, 100, 10-21.	1.2	49
13	Projecting pest population dynamics under global warming: the combined effect of inter―and intraâ€annual variations. Ecological Applications, 2016, 26, 1198-1210.	1.8	28
14	Glucosinolate Desulfation by the Phloem-Feeding Insect Bemisia tabaci. Journal of Chemical Ecology, 2016, 42, 230-235.	0.9	42
15	Only a minority of broad-range detoxification genes respond to a variety of phytotoxins in generalist Bemisia tabaci species. Scientific Reports, 2015, 5, 17975.	1.6	26
16	<i>Bemisia tabaci</i> females from the Mediterranean (Q) species detect and avoid laying eggs in the presence of pyriproxyfen, a juvenile hormone analogue. Pest Management Science, 2014, 70, 1468-1476.	1.7	6
17	Arabidopsis thaliana Plants with Different Levels of Aliphatic- and Indolyl-Glucosinolates Affect Host Selection and Performance of Bemisia tabaci. Journal of Chemical Ecology, 2013, 39, 1361-1372.	0.9	26
18	Inoculation of tomato plants with rhizobacteria enhances the performance of the phloem-feeding insect Bemisia tabaci. Frontiers in Plant Science, 2013, 4, 306.	1.7	38

Shai Morin

#	Article	IF	CITATIONS
19	Activation of the Phenylpropanoid Pathway in Nicotiana tabacum Improves the Performance of the Whitefly Bemisia tabaci via Reduced Jasmonate Signaling. PLoS ONE, 2013, 8, e76619.	1.1	33
20	Sustained susceptibility of pink bollworm to Bt cotton in the United States. GM Crops and Food, 2012, 3, 194-200.	2.0	38
21	Insights into the transcriptomics of polyphagy: Bemisia tabaci adaptability to phenylpropanoids involves coordinated expression of defense and metabolic genes. Insect Biochemistry and Molecular Biology, 2012, 42, 251-263.	1.2	44
22	Using Drosophila melanogaster to validate metabolism-based insecticide resistance from insect pests. Insect Biochemistry and Molecular Biology, 2012, 42, 918-924.	1.2	54
23	Assessment of the Bemisia tabaci CYP6CM1vQ transcript and protein levels in laboratory and field-derived imidacloprid-resistant insects and cross-metabolism potential of the recombinant enzyme. Insect Science, 2011, 18, 23-29.	1.5	62
24	The involvement of glutathione S-tranferases in the interactions between <i>Bemisia tabaci</i> (Hemiptera: Aleyrodidae) and its Brassicaceae hosts. Israel Journal of Plant Sciences, 2010, 58, 93-102.	0.3	6
25	Extraordinary Resistance to Insecticides Reveals Exotic Q Biotype of Bemisia tabaci in the New World. Journal of Economic Entomology, 2010, 103, 2174-2186.	0.8	91
26	Molecular diagnostics for detecting pyrethroid and organophosphate resistance mutations in the Q biotype of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Pesticide Biochemistry and Physiology, 2009, 94, 49-54.	1.6	40
27	Asymmetric reproductive interference between two closely related spider mites: Tetranychus urticae and T. turkestani (Acari: Tetranychidae). Experimental and Applied Acarology, 2009, 48, 213-227.	0.7	18
28	The gene road to royalty – differential expression of hydroxylating genes in the mandibular glands of the honeybee. FEBS Journal, 2009, 276, 5481-5490.	2.2	40
29	Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance. Insect Biochemistry and Molecular Biology, 2009, 39, 697-706.	1.2	204
30	Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochemistry and Molecular Biology, 2008, 38, 634-644.	1.2	349
31	Organophosphates' resistance in the B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase. Insect Biochemistry and Molecular Biology, 2008, 38, 940-949.	1.2	153
32	The Transcript and Metabolite Networks Affected by the Two Clades of Arabidopsis Glucosinolate Biosynthesis Regulators. Plant Physiology, 2008, 148, 2021-2049.	2.3	188
33	Reverse Genetics of Floral Scent: Application of Tobacco Rattle Virus-Based Gene Silencing in Petunia. Plant Physiology, 2007, 145, 1241-1250.	2.3	66
34	Reversal of resistance to pyriproxyfen in the Q biotype ofBemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science, 2007, 63, 761-768.	1.7	25
35	ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari: Tetranychidae). Experimental and Applied Acarology, 2007, 41, 169-181.	0.7	89
36	Resistance to Insecticides in the TYLCV vector, Bemisia Tabaci. , 2007, , 305-325.		28

Shai Morin

#	Article	IF	CITATIONS
37	Multiple origins of pyrethroid resistance in sympatric biotypes of Bemisia tabaci (Hemiptera:) Tj ETQq1 1 0.7843	14 rgBT /C 1.9)verlock 10 T
38	High-Level Resistance to Bacillus thuringiensis Toxin Cry1Ac and Cadherin Genotype in Pink Bollworm. Journal of Economic Entomology, 2006, 99, 2125-2131.	0.8	19
39	DNA Screening Reveals Pink Bollworm Resistance to Bt Cotton Remains Rare After a Decade of Exposure. Journal of Economic Entomology, 2006, 99, 1525-1530.	0.8	50
40	Association Between Resistance to Bt Cotton and Cadherin Genotype in Pink Bollworm. Journal of Economic Entomology, 2005, 98, 635-644.	0.8	85
41	DNA-based detection of Bt resistance alleles in pink bollworm. Insect Biochemistry and Molecular Biology, 2004, 34, 1225-1233.	1.2	57
42	Shared genetic basis of resistance to Bt toxin Cry1ac in independent strains of pink bollworm. Journal of Economic Entomology, 2004, 97, 721-6.	0.8	32
43	Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5004-5009.	3.3	390
44	Insect Resistance to Transgenic Bt Crops: Lessons from the Laboratory and Field. Journal of Economic Entomology, 2003, 96, 1031-1038.	0.8	199
45	Rate of Tomato yellow leaf curl virus Translocation in the Circulative Transmission Pathway of its Vector, the Whitefly Bemisia tabaci. Phytopathology, 2001, 91, 188-196.	1.1	139
46	Transmission of Tomato Yellow Leaf Curl Geminivirus to Imidacloprid Treated Tomato Plants by the Whitefly Bemisia tabaci(Homoptera: Aleyrodidae). Journal of Economic Entomology, 1999, 92, 658-662.	0.8	24