
Alberto Corrias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8213485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chaste: An Open Source C++ Library for Computational Physiology and Biology. PLoS Computational Biology, 2013, 9, e1002970.	3.2	375
2	A Multiscale Investigation of Repolarization Variability and Its Role in Cardiac Arrhythmogenesis. Biophysical Journal, 2011, 101, 2892-2902.	0.5	102
3	A Quantitative Model of Gastric Smooth Muscle Cellular Activation. Annals of Biomedical Engineering, 2007, 35, 1595-1607.	2.5	74
4	Quantitative cellular description of gastric slow wave activity. American Journal of Physiology - Renal Physiology, 2008, 294, G989-G995.	3.4	69
5	lonic mechanisms of electrophysiological properties and repolarization abnormalities in rabbit Purkinje fibers. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1806-H1813.	3.2	55
6	The Na ⁺ /K ⁺ pump is an important modulator of refractoriness and rotor dynamics in human atrial tissue. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1146-H1159.	3.2	45
7	A Model of Slow Wave Propagation and Entrainment Along the Stomach. Annals of Biomedical Engineering, 2010, 38, 3022-3030.	2.5	31
8	Considerations for the use of cellular electrophysiology models within cardiac tissue simulations. Progress in Biophysics and Molecular Biology, 2011, 107, 74-80.	2.9	28
9	Modelling tissue electrophysiology with multiple cell types: applications of the extended bidomain framework. Integrative Biology (United Kingdom), 2012, 4, 192.	1.3	22
10	A Quantitative Model of Human Jejunal Smooth Muscle Cell Electrophysiology. PLoS ONE, 2012, 7, e42385.	2.5	18
11	Reference descriptions of cellular electrophysiology models. Bioinformatics, 2008, 24, 1112-1114.	4.1	12
12	High-throughput cardiac science on the Grid. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 3907-3923.	3.4	9
13	Sex and age related differences in drug induced QT prolongation by dofetilide under reduced repolarization reserve in simulated ventricular cells. , 2010, 2010, 3245-8.		9
14	Design and implementation of a flipped classroom learning environment in the biomedical engineering context. , 2015, 2015, 3985-8.		9
15	A mechanistic model of a PDGFRα+ cell. Journal of Theoretical Biology, 2016, 408, 127-136.	1.7	9
16	Modelling Human Colonic Smooth Muscle Cell Electrophysiology. Cellular and Molecular Bioengineering, 2017, 10, 186-197.	2.1	8
17	Sleep, Well-Being and Academic Performance: A Study in a Singapore Residential College. Frontiers in Psychology, 2021, 12, 672238.	2.1	8
18	Modelling Tissue Electrophysiology in the GI Tract: Past, Present and Future. Lecture Notes in Computational Vision and Biomechanics, 2013, , 167-195.	0.5	5

ALBERTO CORRIAS

#	Article	IF	CITATIONS
19	The panniculus carnosus muscle: a missing link in the chronicity of heel pressure ulcers?. Journal of the Royal Society Interface, 2022, 19, 20210631.	3.4	4
20	Computational modeling of the thin muscle layer, panniculus carnosus, demonstrates principles of pressure injury and prophylactic dressings. , 2020, , 41-54.		3
21	A novel biophysically-detailed mathematical model of rabbit Purkinje cell electrophysiology. , 2010, 2010, 2010, 2658-61.		Ο
22	The panniculus carnosus layer exhibits poor regeneration and deformed geometry following pressure injury: Implications for biomechanical protection. FASEB Journal, 2021, 35, .	0.5	0