
Priv Doz Martin H G Prechtl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8213039/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cascade Catalysis Through Bifunctional Lipase Metal Biohybrids for the Synthesis of Enantioenriched Oâ€Heterocycles from Allenes. ChemCatChem, 2022, 14, .	1.8	11
2	Bimetallic RuPd nanoparticles in ionic liquids: selective catalysts for the hydrogenation of aromatic compounds. New Journal of Chemistry, 2021, 45, 98-103.	1.4	8
3	Rutheniumâ€Catalyzed <i>E</i> â€Selective Partial Hydrogenation of Alkynes under Transferâ€Hydrogenation Conditions using Paraformaldehyde as Hydrogen Source. ChemCatChem, 2021, 13, 1317-1325.	1.8	15
4	Methanol-Driven Oxidative Rearrangement of Biogenic Furans – Enzyme Cascades vs. Photobiocatalysis. Frontiers in Chemistry, 2021, 9, 635883.	1.8	2
5	Non-Covalent Interactions in Enantioselective Organocatalysis: Theoretical and Mechanistic Studies of Reactions Mediated by Dual H-Bond Donors, Bifunctional Squaramides, Thioureas and Related Catalysts. Catalysts, 2021, 11, 569.	1.6	29
6	Toward electrocatalytic chemoenzymatic hydrogen evolution and beyond. Cell Reports Physical Science, 2021, 2, 100626.	2.8	1
7	Copperâ€Catalyzed Formylation of Amines by using Methanol as the C1 Source. ChemSusChem, 2020, 13, 882-887.	3.6	16
8	Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coordination Chemistry Reviews, 2020, 416, 213319.	9.5	427
9	Frontispiece: Chemoenzymatic Hydrogen Production from Methanol through the Interplay of Metal Complexes and Biocatalysts. Chemistry - A European Journal, 2019, 25, .	1.7	0
10	<i>De novo</i> synthesis of Cr-embedded MOF-199 and derived porous CuO/CuCr ₂ O ₄ composites for enhanced phenol hydroxylation. Green Chemistry, 2019, 21, 1889-1894.	4.6	21
11	The reductive deaminative conversion of nitriles to alcohols using <i>para</i> -formaldehyde in aqueous solution. Catalysis Science and Technology, 2019, 9, 6092-6101.	2.1	3
12	Chemoenzymatic Hydrogen Production from Methanol through the Interplay of Metal Complexes and Biocatalysts. Chemistry - A European Journal, 2019, 25, 6474-6481.	1.7	7
13	CO2-based hydrogen storage – Hydrogen generation from formaldehyde/water. ChemistrySelect, 2018, 3, .	0.7	5
14	4. CO2-based hydrogen storage – Hydrogen generation from formaldehyde/water. , 2018, , 95-124.		1
15	Metal Pincer Catalysts in Aqueous Media. , 2018, , 273-294.		Ο
16	Amide <i>versus</i> amine ligand paradigm in the direct amination of alcohols with Ru-PNP complexes. Catalysis Science and Technology, 2018, 8, 3969-3976.	2.1	18
17	Selective hydrogenation of N-heterocyclic compounds using Ru nanocatalysts in ionic liquids. Green Chemistry, 2017, 19, 2762-2767.	4.6	55
18	Future perspectives for formaldehyde: pathways for reductive synthesis and energy storage. Green Chemistry, 2017, 19, 2347-2355.	4.6	115

PRIV DOZ MARTIN H G PRECHTL

#	Article	IF	CITATIONS
19	Nitrile hydrogenation using nickel nanocatalysts in ionic liquids. New Journal of Chemistry, 2017, 41, 9594-9597.	1.4	17
20	Challenging Thermodynamics: Hydrogenation of Benzene to 1,3 yclohexadiene by Ru@Pt Nanoparticles. ChemCatChem, 2017, 9, 204-211.	1.8	30
21	Selective partial hydrogenation of alkynes to (Z)-alkenes with ionic liquid-doped nickel nanocatalysts at near ambient conditions. Chemical Communications, 2016, 52, 9129-9132.	2.2	47
22	Rutheniumâ€Catalyzed Methylation of Amines with Paraformaldehyde in Water under Mild Conditions. ChemSusChem, 2016, 9, 2343-2347.	3.6	21
23	Self‣ufficient Formaldehydeâ€ŧoâ€Methanol Conversion by Organometallic Formaldehyde Dismutase Mimic. Chemistry - A European Journal, 2016, 22, 11568-11573.	1.7	15
24	The Prospecting Shortcut to an Old Molecule: Formaldehyde Synthesis at Low Temperature in Solution. ChemSusChem, 2016, 9, 2905-2907.	3.6	7
25	Water decontamination with hydrogen production using microwave-formed minute-made ruthenium catalysts. Green Chemistry, 2016, 18, 1469-1474.	4.6	33
26	New insights into the catalytic cleavage of the lignin β-O-4 linkage in multifunctional ionic liquid media. Catalysis Science and Technology, 2016, 6, 1882-1891.	2.1	50
27	Bioinduced Roomâ€Temperature Methanol Reforming. Angewandte Chemie - International Edition, 2015, 54, 10308-10312.	7.2	45
28	Transfer Hydrogenation Employing Ethylene Diamine Bisborane in Water and Pd- and Ru-Nanoparticles in Ionic Liquids. Molecules, 2015, 20, 17058-17069.	1.7	8
29	Tuneable Hydrogenation of Nitriles into Imines or Amines with a Ruthenium Pincer Complex under Mild Conditions. ChemCatChem, 2015, 7, 1023-1028.	1.8	69
30	Base promoted hydrogenolysis of lignin model compounds and organosolv lignin over metal catalysts in water. Chemical Engineering Science, 2015, 123, 155-163.	1.9	153
31	The Role of Ionic Liquids in Hydrogen Storage. Chemistry - A European Journal, 2014, 20, 8934-8941.	1.7	21
32	Synthesis and characterisation of ruthenium dihydrogen complexes and their reactivity towards B–H bonds. Dalton Transactions, 2014, 43, 290-299.	1.6	24
33	Fast track to nanomaterials: microwave assisted synthesis in ionic liquid media. RSC Advances, 2014, 4, 14149-14156.	1.7	19
34	Ligand-free copper(<scp>i</scp>) oxide nanoparticle-catalysed amination of aryl halides in ionic liquids. Catalysis Science and Technology, 2014, 4, 102-108.	2.1	29
35	Stereoselective iron-catalyzed alkyne hydrogenation in ionic liquids. Chemical Communications, 2014, 50, 2261-2264.	2.2	84
36	Selective conversion of alcohols in water to carboxylic acids by <i>in situ</i> generated ruthenium <i>trans</i> dihydrido carbonyl PNP complexes. Dalton Transactions, 2014, 43, 17248-17254.	1.6	84

PRIV DOZ MARTIN H G PRECHTL

#	Article	IF	CITATIONS
37	Selective and mild hydrogen production using water and formaldehyde. Nature Communications, 2014, 5, 3621.	5.8	147
38	Metal Catalysts Immobilized in Ionic Liquids: A Couple with Opportunities for Fine Chemicals Derived from Biomass. , 2013, , 243-264.		1
39	Single step synthesis of metallic nanoparticles using dihydroxyl functionalized ionic liquids as reductive agent. RSC Advances, 2013, 3, 20324.	1.7	19
40	Recyclable nanoscale copper(i) catalysts in ionic liquid media for selective decarboxylative C–C bond cleavage. Catalysis Science and Technology, 2013, 3, 992.	2.1	23
41	Hydrogen storage in amine boranes: Ionic liquid supported thermal dehydrogenation of ethylene diamine bisborane. International Journal of Hydrogen Energy, 2013, 38, 3283-3290.	3.8	51
42	Metal oxide and bimetallic nanoparticles in ionic liquids: synthesis and application in multiphase catalysis. Nanotechnology Reviews, 2013, 2, 577-595.	2.6	29
43	Hydrogen Storage Using Ionic Liquid Media. Current Organic Chemistry, 2013, 17, 220-228.	0.9	20
44	Ruthenium Nanoparticles in Ionic Liquids – A Saga. Current Organic Chemistry, 2013, 17, 414-429.	0.9	39
45	Editorial (Hot Topic: Nanoscale Catalysts as Tools for Synthesis). Current Organic Chemistry, 2013, 17, 325-325.	0.9	0
46	Molecular Palladium Precursors for Pd ⁰ Nanoparticle Preparation by Microwave Irradiation: Synthesis, Structural Characterization and Catalytic Activity. European Journal of Inorganic Chemistry, 2012, 2012, 6027-6033.	1.0	16
47	Direct coupling of alcohols to form esters and amides with evolution of H2 using in situ formed ruthenium catalysts. Catalysis Science and Technology, 2012, 2, 2039.	2.1	50
48	Palladium Catalysed Aerobic Dehydrogenation of CH Bonds in Cyclohexanones. ChemCatChem, 2012, 4, 326-327.	1.8	21
49	On the formation of anisotropic gold nanoparticles by sputtering onto a nitrile functionalised ionic liquid. Physical Chemistry Chemical Physics, 2011, 13, 13552.	1.3	55
50	Palladium nanoparticle catalysts in ionic liquids: synthesis, characterisation and selective partial hydrogenation of alkynes to Z-alkenes. Journal of Materials Chemistry, 2011, 21, 3030.	6.7	105
51	Palladium Nanoscale Catalysts in Ionic Liquids: Coupling and Hydrogenation Reactions. , 2011, , .		1
52	Advancement in Molecular Hydrogen Storage Systems. ChemCatChem, 2011, 3, 1257-1259.	1.8	14
53	Catalytic CH Bond Activation at Nanoscale Lewis Acidic Aluminium Fluorides: H/D Exchange Reactions at Aromatic and Aliphatic Hydrocarbons. Chemistry - A European Journal, 2011, 17, 14385-14388.	1.7	46
54	Carbon-Carbon Cross Coupling Reactions in Ionic Liquids Catalysed by Palladium Metal Nanoparticles. Molecules, 2010, 15, 3441-3461.	1.7	137

#	Article	IF	CITATIONS
55	Decomposition of Formic Acid Catalyzed by a Phosphineâ€Free Ruthenium Complex in a Taskâ€Specific Ionic Liquid. ChemCatChem, 2010, 2, 1265-1270.	1.8	53
56	Imidazolium ionic liquids as promoters and stabilising agents for the preparation of metal(0) nanoparticles by reduction and decomposition of organometallic complexes. Nanoscale, 2010, 2, 2601.	2.8	80
57	Ionic Liquid Surface Composition Controls the Size of Gold Nanoparticles Prepared by Sputtering Deposition. Journal of Physical Chemistry C, 2010, 114, 11764-11768.	1.5	134
58	Tuning the selectivity of ruthenium nanoscale catalysts with functionalised ionic liquids: Hydrogenation of nitriles. Journal of Molecular Catalysis A, 2009, 313, 74-78.	4.8	67
59	Application of Chiral Ionic Liquids for Asymmetric Induction in Catalysis. Current Organic Chemistry, 2009, 13, 1259-1277.	0.9	48
60	Ruthenium Dihydrogen Complex for C–H Activation: Catalytic H/D Exchange under Mild Conditions. European Journal of Inorganic Chemistry, 2008, 2008, 3493-3500.	1.0	39
61	Nanoscale Ru(0) Particles: Arene Hydrogenation Catalysts in Imidazolium Ionic Liquids. Inorganic Chemistry, 2008, 47, 8995-9001.	1.9	128
62	Synthesis and Characterisation of Nonclassical Ruthenium Hydride Complexes Containing Chelating Bidentate and Tridentate Phosphine Ligands. Chemistry - A European Journal, 2007, 13, 1539-1546.	1.7	64
63	Can [M(H)2(H2)(PXP)] Pincer Complexes (M=Fe, Ru, Os; X=N, O, S) Serve as Catalyst Lead Structures for NH3 Synthesis from N2 and H2?. Chemistry - A European Journal, 2007, 13, 6636-6643.	1.7	37
64	H/D Exchange at Aromatic and Heteroaromatic Hydrocarbons Using D2O as the Deuterium Source and Ruthenium Dihydrogen Complexes as the Catalyst. Angewandte Chemie - International Edition, 2007, 46, 2269-2272.	7.2	129
65	Simple, expedient methods for the determination of water and electrolyte contents of cellulose solvent systems. Cellulose, 2006, 13, 581-592.	2.4	10
66	Coupling of Vinylic Tellurides with Alkynes Catalyzed by Palladium Dichloride: Evaluation of Synthetic and Mechanistic Details ChemInform, 2004, 35, no.	0.1	0
67	Coupling of Vinylic Tellurides with Alkynes Catalyzed by Palladium Dichloride:Â Evaluation of Synthetic and Mechanistic Details. Organometallics, 2004, 23, 3990-3996.	1.1	64