Murray Coles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/821292/publications.pdf Version: 2024-02-01

MUDDAY COLES

#	Article	IF	CITATIONS
1	A topological refactoring design strategy yields highly stable granulopoietic proteins. Nature Communications, 2022, 13, .	12.8	4
2	The breakthrough in protein structure prediction. Biochemical Journal, 2021, 478, 1885-1890.	3.7	39
3	Design of novel granulopoietic proteins by topological rescaffolding. PLoS Biology, 2020, 18, e3000919.	5.6	8
4	Reconstructing the Remote Origins of a Fold Singleton from a Flavodoxin-Like Ancestor. Biochemistry, 2019, 58, 4790-4793.	2.5	9
5	Mapping Local Conformational Landscapes of Proteins in Solution. Structure, 2019, 27, 853-865.e5.	3.3	14
6	Characterization of MCU-Binding Proteins MCUR1 and CCDC90B — Representatives of a Protein Family Conserved in Prokaryotes and Eukaryotic Organelles. Structure, 2019, 27, 464-475.e6.	3.3	19
7	Asymmetric protein design from conserved supersecondary structures. Journal of Structural Biology, 2018, 204, 380-387.	2.8	13
8	An Interface-Driven Design Strategy Yields a Novel, Corrugated Protein Architecture. ACS Synthetic Biology, 2018, 7, 2226-2235.	3.8	11
9	Distinct mechanisms contribute to immunity in the lantibiotic <scp>NAI</scp> â€107 producer strain <scp><i>M</i></scp> <i>icrobispora</i> â€ <scp>ATCC PTA</scp> â€5024. Environmental Microbiology, 2016, 18, 118-132.	3.8	24
10	Origin of a folded repeat protein from an intrinsically disordered ancestor. ELife, 2016, 5, .	6.0	43
11	Structure and Evolution of N-domains in AAA Metalloproteases. Journal of Molecular Biology, 2015, 427, 910-923.	4.2	23
12	STAC—A New Domain Associated with Transmembrane Solute Transport and Two-Component Signal Transduction Systems. Journal of Molecular Biology, 2015, 427, 3327-3339.	4.2	17
13	Structural Dynamics of the Cereblon Ligand Binding Domain. PLoS ONE, 2015, 10, e0128342.	2.5	22
14	Thalidomide mimics uridine binding to an aromatic cage in cereblon. Journal of Structural Biology, 2014, 188, 225-232.	2.8	54
15	Crystallographic snapshot of the Escherichia coli EnvZ histidine kinase in an active conformation. Journal of Structural Biology, 2014, 186, 376-379.	2.8	46
16	A soluble mutant of the transmembrane receptor Af1503 features strong changes in coiled-coil periodicity. Journal of Structural Biology, 2014, 186, 357-366.	2.8	15
17	Your personalized protein structure: Andrei N. Lupas fused to GCN4 adaptors. Journal of Structural Biology, 2014, 186, 380-385.	2.8	15
18	A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation. Nature Structural and Molecular Biology, 2012, 19, 1324-1331.	8.2	144

MURRAY COLES

#	Article	IF	CITATIONS
19	Mechanism of Regulation of Receptor Histidine Kinases. Structure, 2012, 20, 56-66.	3.3	87
20	The Mechanisms of HAMP-Mediated Signaling in Transmembrane Receptors. Structure, 2011, 19, 378-385.	3.3	86
21	Optimized Measurement Temperature Gives Access to the Solution Structure of a 49 kDa Homohexameric β-Propeller. Journal of the American Chemical Society, 2010, 132, 15692-15698.	13.7	6
22	SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database. Journal of Biomolecular NMR, 2009, 43, 179-185.	2.8	14
23	CheckShift: automatic correction of inconsistent chemical shift referencing. Journal of Biomolecular NMR, 2007, 39, 223-227.	2.8	22
24	The HAMP Domain Structure Implies Helix Rotation in Transmembrane Signaling. Cell, 2006, 126, 929-940.	28.9	351
25	An efficient strategy for assignment of cross-peaks in 3D heteronuclear NOESY experiments. Journal of Biomolecular NMR, 1999, 15, 177-180.	2.8	73