List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8212466/publications.pdf Version: 2024-02-01

		36203	34900
205	10,967	51	98
papers	citations	h-index	g-index
212 all docs	212 docs citations	212 times ranked	9459 citing authors

#	Article	IF	CITATIONS
1	Neuroimmunological complications arising from chemotherapyâ€induced gut toxicity and opioid exposure in female dark agouti rats. Journal of Neuroscience Research, 2022, 100, 237-250.	1.3	3
2	Long-term intrathecal administration of morphine vs. baclofen: Differences in CSF glycoconjugate profiles using multiglycomics. Glycobiology, 2022, 32, 50-59.	1.3	7
3	Toll-Like Receptors change morphine-induced antinociception, tolerance and dependence: studies using male and female TLR and Signalling gene KO mice. Brain, Behavior, and Immunity, 2022, , .	2.0	12
4	Toll-Like Receptor 4 in Pain: Bridging Molecules-to-Cells-to-Systems. Handbook of Experimental Pharmacology, 2022, , 1.	0.9	1
5	Glial-modulating agents for the treatment of pain: protocol for a systematic review. BMJ Open, 2022, 12, e055713.	0.8	0
6	The Neuroimmune Interface and Chronic Pain Through the Lens of Production Animals. Frontiers in Neuroscience, 2022, 16, .	1.4	2
7	Study protocol: an observational study of distress, immune function and persistent pain in HIV. BMJ Open, 2022, 12, e059723.	0.8	0
8	The Neuroimmunology of Chronic Pain: From Rodents to Humans. Journal of Neuroscience, 2021, 41, 855-865.	1.7	78
9	Graded peripheral nerve injury creates mechanical allodynia proportional to the progression and severity of microglial activity within the spinal cord of male mice. Brain, Behavior, and Immunity, 2021, 91, 568-577.	2.0	6
10	Gender inequality in publishing during the COVID-19 pandemic. Brain, Behavior, and Immunity, 2021, 91, 1-3.	2.0	50
11	Artemisinin inhibits TLR4 signaling by targeting coâ€receptor MD2 in microglial BVâ€2 cells and prevents lipopolysaccharideâ€induced blood–brain barrier leakage in mice. Journal of Neurochemistry, 2021, 157, 611-623.	2.1	16
12	The Relationship Between Androgens and Days per Month of Period Pain, Pelvic Pain, Headache, and TLR4 Responsiveness of Peripheral Blood Mononuclear Cells in Young Women with Dysmenorrhoea. Journal of Pain Research, 2021, Volume 14, 585-599.	0.8	7
13	Nicotine and its metabolite cotinine target MD2 and inhibit TLR4 signaling. Innovation(China), 2021, 2, 100111.	5.2	10
14	Neuroimmune reactivity marker expression in rodent models of chemotherapy-induced cognitive impairment: A systematic scoping review. Brain, Behavior, and Immunity, 2021, 94, 392-409.	2.0	16
15	Effects of Mild and Moderate Monoclonal Antibody Dose on Inflammation, Bone Loss, and Activation of the Central Nervous System in a Female Collagen Antibody-induced Arthritis Mouse Model. Journal of Histochemistry and Cytochemistry, 2021, 69, 511-522.	1.3	1
16	Evaluation of miRNA as Biomarkers of Emotional Valence in Pigs. Animals, 2021, 11, 2054.	1.0	3
17	Intrathecal implantation surgical considerations in rodents; a review. Journal of Neuroscience Methods, 2021, 363, 109327.	1.3	2

18 TLR4 biased small molecule modulators. , 2021, 228, 107918.

#	Article	IF	CITATIONS
19	Evolving Expectations of the Orthopedic Team Physician: Managing the Sidelines and Landmines. Current Sports Medicine Reports, 2021, 20, 553-561.	0.5	1
20	Autofluorescent imprint of chronic constriction nerve injury identified by deep learning. Neurobiology of Disease, 2021, 160, 105528.	2.1	1
21	Androgens, Endometriosis and Pain. Frontiers in Reproductive Health, 2021, 3, .	0.6	7
22	Are the protective benefits of vitamin D in neurodegenerative disease dependent on route of administration? A systematic review. Nutritional Neuroscience, 2020, 23, 251-280.	1.5	15
23	Lipopolysaccharide and Morphine-3-Glucuronide-Induced Immune Signalling Increases the Expression of Polysialic Acid in PC12 Cells. Molecular Neurobiology, 2020, 57, 964-975.	1.9	4
24	Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Science of the Total Environment, 2020, 701, 134684.	3.9	98
25	A Method for in Vivo Quantification Of Cytokine IL-1β In The Rat Intrathecal Space. ACS Applied Bio Materials, 2020, 3, 539-546.	2.3	8
26	Acute stress induces the rapid and transient induction of caspase-1, gasdermin D and release of constitutive IL-1β protein in dorsal hippocampus. Brain, Behavior, and Immunity, 2020, 90, 70-80.	2.0	9
27	Sphingosine-1-phosphate receptor subtype 1 activation in the central nervous system contributes to morphine withdrawal in rodents. Journal of Neuroinflammation, 2020, 17, 314.	3.1	6
28	Dynamic in vivo protein carbonyl biosensor for measuring oxidative stress. Medical Devices & Sensors, 2020, 3, e10135.	2.7	1
29	BrainPhys neuronal medium optimized for imaging and optogenetics in vitro. Nature Communications, 2020, 11, 5550.	5.8	18
30	Assessing the Effects of Parthenolide on Inflammation, Bone Loss, and Glial Cells within a Collagen Antibody-Induced Arthritis Mouse Model. Mediators of Inflammation, 2020, 2020, 1-13.	1.4	8
31	Zerumbone Modulates α2A-Adrenergic, TRPV1, and NMDA NR2B Receptors Plasticity in CCI-Induced Neuropathic Pain In Vivo and LPS-Induced SH-SY5Y Neuroblastoma In Vitro Models. Frontiers in Pharmacology, 2020, 11, 92.	1.6	19
32	Stimulation of water and calcium dynamics in astrocytes with pulsed infrared light. FASEB Journal, 2020, 34, 6539-6553.	0.2	25
33	Toll-Like Receptor Responsiveness of Peripheral Blood Mononuclear Cells in Young Women with Dysmenorrhea. Journal of Pain Research, 2020, Volume 13, 503-516.	0.8	7
34	Small-Molecule Modulators of Toll-like Receptors. Accounts of Chemical Research, 2020, 53, 1046-1055.	7.6	122
35	Psychoneuroimmunology goes East: Development of the PNIRS affiliate and its expansion into PNIRS. Brain, Behavior, and Immunity, 2020, 88, 75-87.	2.0	8
36	Silk: A bio-derived coating for optical fiber sensing applications. Sensors and Actuators B: Chemical, 2020, 311, 127864.	4.0	24

3

#	Article	IF	CITATIONS
37	Toll-Like Receptor-4 Antagonist (+)-Naltrexone Protects Against Carbamyl-Platelet Activating Factor (cPAF)-Induced Preterm Labor in Mice. American Journal of Pathology, 2020, 190, 1030-1045.	1.9	14
38	In vivo intrathecal IL-11² quantification in rats: Monitoring the molecular signals of neuropathic pain. Brain, Behavior, and Immunity, 2020, 88, 442-450.	2.0	12
39	Science convergence applied to psychoneuroimmunology: The future of measurement and imaging. Brain, Behavior, and Immunity, 2020, 88, 262-269.	2.0	1
40	Targeting Tollâ€like receptorâ€4 to tackle preterm birth and fetal inflammatory injury. Clinical and Translational Immunology, 2020, 9, e1121.	1.7	32
41	Chronic Morphine-Induced Changes in Signaling at the A ₃ Adenosine Receptor Contribute to Morphine-Induced Hyperalgesia, Tolerance, and Withdrawal. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 331-341.	1.3	30
42	Spinal Glial Adaptations Occur in a Minimally Invasive Mouse Model of Endometriosis: Potential Implications for Lesion Etiology and Persistent Pelvic Pain. Reproductive Sciences, 2019, 26, 357-369.	1.1	17
43	Review: What innovations in pain measurement and control might be possible if we could quantify the neuroimmune synapse?. Animal, 2019, 13, 3000-3008.	1.3	3
44	Methamphetamine Activates Toll-Like Receptor 4 to Induce Central Immune Signaling within the Ventral Tegmental Area and Contributes to Extracellular Dopamine Increase in the Nucleus Accumbens Shell. ACS Chemical Neuroscience, 2019, 10, 3622-3634.	1.7	60
45	Stereochemistry and innate immune recognition: (+)â€norbinaltorphimine targets myeloid differentiation protein 2 and inhibits tollâ€like receptor 4 signaling. FASEB Journal, 2019, 33, 9577-9587.	0.2	16
46	Toll-Like Receptor-4 Antagonist (+)-Naloxone Confers Sexually Dimorphic Protection From Inflammation-Induced Fetal Programming in Mice. Endocrinology, 2019, 160, 2646-2662.	1.4	13
47	A Nanoparticle-Based Affinity Sensor that Identifies and Selects Highly Cytokine-Secreting Cells. IScience, 2019, 20, 137-147.	1.9	17
48	Lovastatin inhibits Toll-like receptor 4 signaling in microglia by targeting its co-receptor myeloid differentiation protein 2 and attenuates neuropathic pain. Brain, Behavior, and Immunity, 2019, 82, 432-444.	2.0	37
49	Minocycline attenuates 3,4-methylenedioxymethamphetamine-induced hyperthermia in the rat brain. European Journal of Pharmacology, 2019, 858, 172495.	1.7	2
50	Visualizing neuroinflammation with fluorescence and luminescent lanthanide-based in situ hybridization. Journal of Neuroinflammation, 2019, 16, 65.	3.1	7
51	Improved method for optical fiber temperature probe implantation in brains of free-moving rats. Journal of Neuroscience Methods, 2019, 313, 24-28.	1.3	11
52	Spiropyranâ€Based Nanocarrier: A New Zn ²⁺ â€Responsive Delivery System with Realâ€Time Intracellular Sensing Capabilities. Chemistry - A European Journal, 2019, 25, 854-862.	1.7	17
53	An optical fiber based immunosensor for localized detection of IL-1Î ² in rat spinal cord. Sensors and Actuators B: Chemical, 2019, 282, 122-129.	4.0	15
54	Postbreeding Habitat Use by Golden-Cheeked Warblers (Setophaga chrysoparia). Western North American Naturalist, 2019, 79, 337.	0.2	2

#	Article	IF	CITATIONS
55	Reversible Protein Carbonylation In-Vivo Biosensor. , 2019, , .		0
56	Optical fiber based in-vivo oxidative stress biosensor. , 2019, , .		0
57	Chemical sensing based on silk coated exposed-core fibers. , 2019, , .		0
58	Dissecting the Innate Immune Recognition of Opioid Inactive Isomer (+)-Naltrexone Derived Toll-like Receptor 4 (TLR4) Antagonists. Journal of Chemical Information and Modeling, 2018, 58, 816-825.	2.5	37
59	A novel platform for in vivo detection of cytokine release within discrete brain regions. Brain, Behavior, and Immunity, 2018, 71, 18-22.	2.0	28
60	Differential effect of morphine on gastrointestinal transit, colonic contractions and nerve-evoked relaxations in Toll-Like Receptor deficient mice. Scientific Reports, 2018, 8, 5923.	1.6	13
61	The importance of knowing you are sick: Nanoscale biophotonics for the â€~other' brain. Microelectronic Engineering, 2018, 187-188, 101-104.	1.1	4
62	Antagonising TLR4-TRIF signalling before or after a low-dose alcohol binge during adolescence prevents alcohol drinking but not seeking behaviour in adulthood. Neuropharmacology, 2018, 128, 460-473.	2.0	15
63	The efficacy of (+)-Naltrexone on alcohol preference and seeking behaviour is dependent on light-cycle. Brain, Behavior, and Immunity, 2018, 67, 181-193.	2.0	11
64	Neuroimmunological Manifestations of Chemotherapy Exposure: Implications for Mucositis, Glia and Cognition. Journal of Cancer Science and Research, 2018, 02, .	0.1	1
65	Graphene Oxide Based Recyclable <i>in Vivo</i> Device for Amperometric Monitoring of Interferon-Î ³ in Inflammatory Mice. ACS Applied Materials & Interfaces, 2018, 10, 33078-33087.	4.0	25
66	Perspective: Biomedical sensing and imaging with optical fibers—Innovation through convergence of science disciplines. APL Photonics, 2018, 3, .	3.0	31
67	â€~Convergence' created psychoneuroimmunology, and is needed again to secure the future of the field. Brain, Behavior, and Immunity, 2018, 71, 1-2.	2.0	3
68	Neuroimmunopharmacology at the Interface of Inflammation and Pharmacology Relevant to Depression. , 2018, , 223-240.		0
69	Corticosterone Preexposure Increases NF-κB Translocation and Sensitizes IL-1β Responses in BV2 Microglia-Like Cells. Frontiers in Immunology, 2018, 9, 3.	2.2	21
70	From the Bottom-Up: Chemotherapy and Gut-Brain Axis Dysregulation. Frontiers in Behavioral Neuroscience, 2018, 12, 104.	1.0	68
71	Can neuroimmune mechanisms explain the link between ultraviolet light (UV) exposure and addictive behavior?. Brain, Behavior, and Immunity, 2018, 73, 125-132.	2.0	3
72	Toll-like Receptor-4: A New Target for Preterm Labour Pharmacotherapies?. Current Pharmaceutical Design, 2018, 24, 960-973.	0.9	18

#	Article	IF	CITATIONS
73	Challenges and opportunities in neurophotonics discussed at the International Conference on Biophotonics 2017. Neurophotonics, 2018, 5, 1.	1.7	0
74	Graphene quantum dot based "switch-on―nanosensors for intracellular cytokine monitoring. Nanoscale, 2017, 9, 4934-4943.	2.8	37
75	Sensitive Cytokine Assay Based on Optical Fiber Allowing Localized and Spatially Resolved Detection of Interleukin-6. ACS Sensors, 2017, 2, 218-226.	4.0	39
76	Constriction of the buccal branch of the facial nerve produces unilateral craniofacial allodynia. Brain, Behavior, and Immunity, 2017, 64, 59-64.	2.0	4
77	Ibudilast reduces oxaliplatin-induced tactile allodynia and cognitive impairments in rats. Behavioural Brain Research, 2017, 334, 109-118.	1.2	23
78	Fluorescence brightness and photostability of individual copper (I) oxide nanocubes. Scientific Reports, 2017, 7, 16905.	1.6	6
79	Three new species of <i>Stiphrornis</i> (Aves: Muscicapidae) from the Afro-tropics, with a molecular phylogenetic assessment of the genus. Systematics and Biodiversity, 2017, 15, 87-104.	O.5	7
80	Measuring and tracking vitamin B12: A review of current methods with a focus on optical spectroscopy. Applied Spectroscopy Reviews, 2017, 52, 439-455.	3.4	21
81	Lesion development is modulated by the natural estrous cycle and mouse strain in a minimally invasive model of endometriosisâ€. Biology of Reproduction, 2017, 97, 810-821.	1.2	21
82	The Importance of Knowing You are Sick: Biophotonics For The 'Other' Brain. , 2017, , .		0
83	An optical fibre based ex-vivo device for detection of cytokines. , 2017, , .		0
84	Biophotonics: the big picture. Journal of Biomedical Optics, 2017, 23, 1.	1.4	22
85	The role of Tollâ€like receptor 4 (TLR4) in cardiac ischaemicâ€reperfusion injury, cardioprotection and preconditioning. Clinical and Experimental Pharmacology and Physiology, 2016, 43, 864-871.	0.9	31
86	Pharmacological characterization of the opioid inactive isomers (+)â€naltrexone and (+)â€naloxone as antagonists of tollâ€like receptor 4. British Journal of Pharmacology, 2016, 173, 856-869.	2.7	128
87	Fluorescent nanodiamond and lanthanide labelled in situ hybridization for the identification of RNA transcripts in fixed and CLARITY-cleared central nervous system tissues (Conference Presentation). , 2016, , .		0
88	Measurements of vitamin B12 in human blood serum using resonance Raman spectroscopy. , 2016, , .		0
89	Shapeshifting photoswitchable azobenzene compounds and their biological applications. , 2016, , .		0
90	Measurements of vitamin B12 in human blood serum using resonance Raman spectroscopy. Proceedings of SPIE, 2016, , .	0.8	0

#	Article	IF	CITATIONS
91	Local and Systemic Inflammation in Localized, Provoked Vestibulodynia. Obstetrics and Gynecology, 2016, 128, 337-347.	1.2	23
92	200 Chemotherapy Induces Intestinal Inflammation and Central Changes Which Are Modified by Analgesics via Neuro-Immune Mechanisms. Gastroenterology, 2016, 150, S52.	0.6	0
93	Irinotecan-Induced Gastrointestinal Dysfunction and Pain Are Mediated by Common TLR4-Dependent Mechanisms. Molecular Cancer Therapeutics, 2016, 15, 1376-1386.	1.9	114
94	Novel imaging tools for investigating the role of immune signalling in the brain. Brain, Behavior, and Immunity, 2016, 58, 40-47.	2.0	12
95	Morphine amplifies mechanical allodynia via TLR4 in a rat model of spinal cord injury. Brain, Behavior, and Immunity, 2016, 58, 348-356.	2.0	58
96	Clial contributions to visceral pain: implications for disease etiology and the female predominance of persistent pain. Translational Psychiatry, 2016, 6, e8888-e888.	2.4	43
97	Portable optical fiber probe for in vivo brain temperature measurements. Biomedical Optics Express, 2016, 7, 3069.	1.5	61
98	Novel Toll-like receptor-4 antagonist (+)-naloxone protects mice from inflammation-induced preterm birth. Scientific Reports, 2016, 6, 36112.	1.6	54
99	Nitroxidative Signaling Mechanisms in Pathological Pain. Trends in Neurosciences, 2016, 39, 862-879.	4.2	93
100	Ethnicity-dependent influence of innate immune genetic markers on morphine PCA requirements and adverse effects in postoperative pain. Pain, 2016, 157, 2458-2466.	2.0	26
101	Recent advances in cytokine detection by immunosensing. Biosensors and Bioelectronics, 2016, 79, 810-821.	5.3	109
102	Drug addiction: targeting dynamic neuroimmune receptor interactions as a potential therapeutic strategy. Current Opinion in Pharmacology, 2016, 26, 131-137.	1.7	48
103	Chemotherapy-induced gut toxicity and pain: involvement of TLRs. Supportive Care in Cancer, 2016, 24, 2251-2258.	1.0	22
104	Hyperspectral imaging of endogenous fluorescent metabolic molecules to identify pain states in central nervous system tissue. Proceedings of SPIE, 2016, , .	0.8	3
105	Hollow-Core Optical Fibers Made by Glass Billet Extrusion as Sensors for Raman Spectroscopy. , 2016, ,		0
106	A portable optical fiber probe for in vivo brain temperature measurements. Proceedings of SPIE, 2016, , .	0.8	1
107	Hollow core optical fibres made by glass billet extrusion as sensors for Raman spectroscopy. , 2016, ,		0
108	Poster Sessions Monday/Tuesday. Journal of Neurochemistry, 2015, 134, 102-242.	2.1	2

#	Article	IF	CITATIONS
109	<i>CYP2B6</i> * <i>6</i> allele and age substantially reduce steadyâ€state ketamine clearance in chronic pain patients: impact on adverse effects. British Journal of Clinical Pharmacology, 2015, 80, 276-284.	1.1	51
110	Glial Attenuation With Ibudilast in the Treatment of Medication Overuse Headache: A Doubleâ€Blind, Randomized, Placeboâ€Controlled Pilot Trial of Efficacy and Safety. Headache, 2015, 55, 1192-1208.	1.8	13
111	DAT isn't all that: cocaine reward and reinforcement require Toll-like receptor 4 signaling. Molecular Psychiatry, 2015, 20, 1525-1537.	4.1	178
112	Alcohol-induced sedation and synergistic interactions between alcohol and morphine: A key mechanistic role for Toll-like receptors and MyD88-dependent signaling. Brain, Behavior, and Immunity, 2015, 45, 245-252.	2.0	21
113	Toll-Like Receptor 4 Is an Essential Upstream Regulator of On-Time Parturition and Perinatal Viability in Mice. Endocrinology, 2015, 156, 3828-3841.	1.4	54
114	Amitriptyline pharmacologically preconditions rat hearts against cardiac ischemic–reperfusion injury. International Journal of Cardiology, 2015, 190, 353-359.	0.8	10
115	Mouse models of mastitis – how physiological are they?. International Breastfeeding Journal, 2015, 10, 12.	0.9	18
116	The Relationship Between Opioids and Immune Signalling in the Spinal Cord. Handbook of Experimental Pharmacology, 2015, 227, 207-238.	0.9	18
117	Select steroid hormone glucuronide metabolites can cause toll-like receptor 4 activation and enhanced pain. Brain, Behavior, and Immunity, 2015, 44, 128-136.	2.0	13
118	Targeting the Toll of Drug Abuse: The Translational Potential of Toll-Like Receptor 4. CNS and Neurological Disorders - Drug Targets, 2015, 14, 692-699.	0.8	75
119	Sex differences in mechanical allodynia: how can it be preclinically quantified and analyzed?. Frontiers in Behavioral Neuroscience, 2014, 8, 40.	1.0	38
120	Glial TLR4 signaling does not contribute to opioid-induced depression of respiration. Journal of Applied Physiology, 2014, 117, 857-868.	1.2	12
121	Effects of a forest pathogen on habitat selection and quality for the endangered goldenâ€cheeked warbler. Wildlife Society Bulletin, 2014, 38, 279-287.	1.6	11
122	Codeine-induced hyperalgesia and allodynia: investigating the role of glial activation. Translational Psychiatry, 2014, 4, e482-e482.	2.4	34
123	Discovery of a Novel Site of Opioid Action at the Innate Immune Pattern-Recognition Receptor TLR4 and its Role in Addiction. International Review of Neurobiology, 2014, 118, 129-163.	0.9	55
124	Toll-Like Receptor 4 Regulates Lipopolysaccharide-Induced Inflammation and Lactation Insufficiency in a Mouse Model of Mastitis1. Biology of Reproduction, 2014, 90, 91.	1.2	27
125	Immune priming and experimental glaucoma: the effect of prior systemic lipopolysaccharide challenge on tissue outcomes after optic nerve injury. Clinical and Experimental Ophthalmology, 2014, 42, 539-554.	1.3	4
126	Association of Innate Immune Single-Nucleotide Polymorphisms with the Electroencephalogram During Desflurane General Anaesthesia. Journal of Molecular Neuroscience, 2014, 52, 497-506.	1.1	17

#	Article	IF	CITATIONS
127	Pathological pain and the neuroimmune interface. Nature Reviews Immunology, 2014, 14, 217-231.	10.6	703
128	Reduced Response to the Thermal Grill Illusion in Chronic Pain Patients. Pain Medicine, 2014, 15, 647-660.	0.9	20
129	Want more pain? Just add a dash of endotoxin to enhance your clinical pain model. Brain, Behavior, and Immunity, 2014, 41, 44-45.	2.0	9
130	Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae. Neuroscience, 2014, 280, 299-317.	1.1	56
131	In vivo veritas: (+)-Naltrexone's actions define translational importance. Trends in Pharmacological Sciences, 2014, 35, 432-433.	4.0	16
132	Inflammatory Mediators in Mastitis and Lactation Insufficiency. Journal of Mammary Gland Biology and Neoplasia, 2014, 19, 161-167.	1.0	58
133	A concern on comparing â€~apples' and â€~oranges' when differences between microglia used in human a rodent studies go far, far beyond simply species: comment on Smith and Dragunow. Trends in Neurosciences, 2014, 37, 189-190.	and 4.2	12
134	Why is neuroimmunopharmacology crucial for the future of addiction research?. Neuropharmacology, 2014, 76, 218-227.	2.0	81
135	Toll-like receptor 4: innate immune regulator of neuroimmune and neuroendocrine interactions in stress and major depressive disorder. Frontiers in Neuroscience, 2014, 8, 309.	1.4	88
136	Effect of Chronic Delivery of the Toll-like Receptor 4 Antagonist (+)-Naltrexone on Incubation of Heroin Craving. Biological Psychiatry, 2013, 73, 729-737.	0.7	106
137	First demonstration of the neuroimmune link in humans using IV Endotoxin and Intradermal Capsaicin in the face and arm. Journal of Headache and Pain, 2013, 14, .	2.5	0
138	The <i>CYP2B6*6</i> Allele Significantly Alters the <i>N-</i> Demethylation of Ketamine Enantiomers In Vitro. Drug Metabolism and Disposition, 2013, 41, 1264-1272.	1.7	45
139	Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause toll-like receptor 4 activation and enhanced pain. Brain, Behavior, and Immunity, 2013, 30, 24-32.	2.0	52
140	Low-dose endotoxin potentiates capsaicin-induced pain in man: Evidence for a pain neuroimmune connection. Brain, Behavior, and Immunity, 2013, 30, 3-11.	2.0	56
141	Medication-overuse headache and opioid-induced hyperalgesia: A review of mechanisms, a neuroimmune hypothesis and a novel approach to treatment. Cephalalgia, 2013, 33, 52-64.	1.8	46
142	TLR 2 and 4 Responsiveness from Isolated Peripheral Blood Mononuclear Cells from Rats and Humans as Potential Chronic Pain Biomarkers. PLoS ONE, 2013, 8, e77799.	1.1	19
143	Peripheral Interleukin-1β Levels are Elevated in Chronic Tension-Type Headache Patients. Pain Research and Management, 2013, 18, 301-306.	0.7	36
144	Therapeutic Strategies to Treat Alcohol-Related Disorders Targeting Central Immune Signaling. , 2013, , 535-559.		0

#	Article	IF	CITATIONS
145	Are the effects of alcohol on the CNS influenced by Toll-like receptor signaling?. Expert Review of Clinical Immunology, 2012, 8, 201-203.	1.3	6
146	Opioid Activation of Toll-Like Receptor 4 Contributes to Drug Reinforcement. Journal of Neuroscience, 2012, 32, 11187-11200.	1.7	258
147	Harnessing pain heterogeneity and RNA transcriptome to identify bloodâ€based pain biomarkers: a novel correlational study design and bioinformatics approach in a graded chronic constriction injury model. Journal of Neurochemistry, 2012, 122, 976-994.	2.1	40
148	(+)-Naloxone, an Opioid-Inactive Toll-Like Receptor 4 Signaling Inhibitor, Reverses Multiple Models of Chronic Neuropathic Pain in Rats. Journal of Pain, 2012, 13, 498-506.	0.7	90
149	Role of microglia and toll-like receptor 4 in the pathophysiology of delirium. Medical Hypotheses, 2012, 79, 735-739.	0.8	22
150	Exploring neuroinflammation as a potential avenue to improve the clinical efficacy of opioids. Expert Review of Neurotherapeutics, 2012, 12, 1311-1324.	1.4	11
151	Morphine activates neuroinflammation in a manner parallel to endotoxin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6325-6330.	3.3	401
152	Inhibiting the TLR4â€MyD88 signalling cascade by genetic or pharmacological strategies reduces acute alcoholâ€induced sedation and motor impairment in mice. British Journal of Pharmacology, 2012, 165, 1319-1329.	2.7	70
153	Toll-like receptors in chronic pain. Experimental Neurology, 2012, 234, 316-329.	2.0	208
154	Commentary on Landry et al.: "Propentofylline, a CNS glial modulator, does not decrease pain in post-herpetic neuralgia patients: In vitro evidence for differential responses in human and rodent microglia and macrophages― Experimental Neurology, 2012, 234, 351-353.	2.0	19
155	Implications of central immune signaling caused by drugs of abuse: Mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence. , 2012, 134, 219-245.		173
156	The Effects of Pregabalin and the Glial Attenuator Minocycline on the Response to Intradermal Capsaicin in Patients with Unilateral Sciatica. PLoS ONE, 2012, 7, e38525.	1.1	20
157	Increased Responsiveness of Peripheral Blood Mononuclear Cells to In Vitro TLR 2, 4 and 7 Ligand Stimulation in Chronic Pain Patients. PLoS ONE, 2012, 7, e44232.	1.1	45
158	Microglia attenuate the opioidâ€induced depression of preBötzinger Complex (preBötC) inspiratory rhythm in vitro via a TLR4â€independent pathway. FASEB Journal, 2012, 26, 1088.8.	0.2	1
159	Adoptive transfer of peripheral immune cells potentiates allodynia in a graded chronic constriction injury model of neuropathic pain. Brain, Behavior, and Immunity, 2011, 25, 503-513.	2.0	24
160	Attenuation of microglial and IL-1 signaling protects mice from acute alcohol-induced sedation and/or motor impairment. Brain, Behavior, and Immunity, 2011, 25, S155-S164.	2.0	69
161	Naloxone-precipitated morphine withdrawal behavior and brain IL- $1^{\hat{1}2}$ expression: Comparison of different mouse strains. Brain, Behavior, and Immunity, 2011, 25, 1223-1232.	2.0	57
162	Peripheral immune contributions to the maintenance of central glial activation underlying neuropathic pain. Brain, Behavior, and Immunity, 2011, 25, 1322-1332.	2.0	96

#	Article	IF	CITATIONS
163	An MD2 Hotâ€Spotâ€Mimicking Peptide that Suppresses TLR4â€Mediated Inflammatory Response in vitro and in vivo. ChemBioChem, 2011, 12, 1827-1831.	1.3	13
164	Inside Cover: An MD2 Hotâ€6potâ€Mimicking Peptide that Suppresses TLR4â€Mediated Inflammatory Response in vitro and in vivo (ChemBioChem 12/2011). ChemBioChem, 2011, 12, 1786-1786.	1.3	0
165	Exploring the Neuroimmunopharmacology of Opioids: An Integrative Review of Mechanisms of Central Immune Signaling and Their Implications for Opioid Analgesia. Pharmacological Reviews, 2011, 63, 772-810.	7.1	342
166	Early-Life Experience Decreases Drug-Induced Reinstatement of Morphine CPP in Adulthood via Microglial-Specific Epigenetic Programming of Anti-Inflammatory IL-10 Expression. Journal of Neuroscience, 2011, 31, 17835-17847.	1.7	162
167	Attenuating Clial Activation with Minocycline Reduces the Hyperthermic Response to 3, 4-Methylenedioxymethamphetamine (MDMA) In the Rat. The Open Addiction Journal, 2011, 4, 4-5.	0.5	1
168	3,4-Methylenedioxymethamphetamine (MDMA) Induced Hyperthermia-The Role of Pro-Inflammatory Cytokines. The Open Addiction Journal, 2011, 4, 48-49.	0.5	0
169	A novel animal model of graded neuropathic pain: Utility to investigate mechanisms of population heterogeneity. Journal of Neuroscience Methods, 2010, 193, 47-53.	1.3	44
170	A new metabotropic glutamate receptor agonist with in vivo anti-allodynic activity. Bioorganic and Medicinal Chemistry, 2010, 18, 6089-6098.	1.4	6
171	Application of a novel in silico high-throughput screen to identify selective inhibitors for protein–protein interactions. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5411-5413.	1.0	34
172	Tollâ€like receptor 4 in CNS pathologies. Journal of Neurochemistry, 2010, 114, 13-27.	2.1	279
173	Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain, Behavior, and Immunity, 2010, 24, 83-95.	2.0	447
174	Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1β. Neuroscience, 2010, 165, 569-583.	1.1	146
175	Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience, 2010, 167, 880-893.	1.1	115
176	Evidence that tricyclic small molecules may possess toll-like receptor and myeloid differentiation protein 2 activity. Neuroscience, 2010, 168, 551-563.	1.1	85
177	Enduring Reversal of Neuropathic Pain by a Single Intrathecal Injection of Adenosine 2A Receptor Agonists: A Novel Therapy for Neuropathic Pain. Journal of Neuroscience, 2009, 29, 14015-14025.	1.7	92
178	The cortical innate immune response increases local neuronal excitability leading to seizures. Brain, 2009, 132, 2478-2486.	3.7	131
179	A Peptide Antagonist of the TLR4–MD2 Interaction. ChemBioChem, 2009, 10, 645-649.	1.3	41
180	Ibudilast: a review of its pharmacology, efficacy and safety in respiratory and neurological disease. Expert Opinion on Pharmacotherapy, 2009, 10, 2897-2904.	0.9	115

#	Article	IF	CITATIONS
181	Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain, Behavior, and Immunity, 2009, 23, 240-250.	2.0	238
182	The glial activation inhibitor AV411 reduces morphine-induced nucleus accumbens dopamine release. Brain, Behavior, and Immunity, 2009, 23, 492-497.	2.0	90
183	The "Toll―of Opioid-Induced Glial Activation: Improving the Clinical Efficacy of Opioids by Targeting Glia. Trends in Pharmacological Sciences, 2009, 30, 581-591.	4.0	353
184	Evidence for a role of heat shock protein-90 in toll like receptor 4 mediated pain enhancement in rats. Neuroscience, 2009, 164, 1821-1832.	1.1	70
185	Association of IL-1B genetic polymorphisms with an increased risk of opioid and alcohol dependence. Pharmacogenetics and Genomics, 2009, 19, 869-876.	0.7	39
186	Nonâ€stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of tollâ€like receptor 4 (TLR4). European Journal of Neuroscience, 2008, 28, 20-29.	1.2	342
187	Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain, Behavior, and Immunity, 2008, 22, 1178-1189.	2.0	262
188	Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia. Brain, Behavior, and Immunity, 2008, 22, 1248-1256.	2.0	161
189	Glia as the "bad guysâ€: Implications for improving clinical pain control and the clinical utility of opioids. Brain, Behavior, and Immunity, 2007, 21, 131-146.	2.0	306
190	Ibudilast (AV-411). Expert Opinion on Investigational Drugs, 2007, 16, 935-950.	1.9	130
191	Opioid-Induced Glial Activation: Mechanisms of Activation and Implications for Opioid Analgesia, Dependence, and Reward. Scientific World Journal, The, 2007, 7, 98-111.	0.8	305
192	Neuroimmune Interactions and Pain: The Role of Immune and Glial Cells. , 2007, , 393-414.		6
193	Air Pollution Distribution Patterns in the San Bernardino Mountains of Southern California: a 40-Year Perspective. Scientific World Journal, The, 2007, 7, 98-109.	0.8	28
194	"Listening―and "talking―to neurons: Implications of immune activation for pain control and increasing the efficacy of opioids. Brain Research Reviews, 2007, 56, 148-169.	9.1	162
195	The effects of a single exposure to uncontrollable stress on the subsequent conditioned place preference responses to oxycodone, cocaine, and ethanol in rats. Psychopharmacology, 2007, 191, 909-917.	1.5	35
196	Characterisation of the in vitro modulation of splenocyte proliferation by non-4,5-epoxymorphinan opioids. International Immunopharmacology, 2005, 5, 1713-1722.	1.7	5
197	Glia: novel counter-regulators of opioid analgesia. Trends in Neurosciences, 2005, 28, 661-669.	4.2	303
198	Relationship between 4,5-epoxymorphinan structure and in vitro modulation of cell proliferation. European Journal of Pharmacology, 2004, 494, 251-262.	1.7	8

#	Article	IF	CITATIONS
199	In vitro opioid induced proliferation of peripheral blood immune cells correlates with in vivo cold pressor pain tolerance in humans: a biological marker of pain tolerance. Pain, 2004, 110, 751-755.	2.0	13
200	(S)-(+)-methadone is more immunosuppressive than the potent analgesic (R)-(â^')-methadone. International Immunopharmacology, 2004, 4, 1525-1530.	1.7	13
201	CYP2D6 and CYP3A4 involvement in the primary oxidative metabolism of hydrocodone by human liver microsomes. British Journal of Clinical Pharmacology, 2003, 57, 287-297.	1.1	112
202	Quantification of the O- and N-demethylated metabolites of hydrocodone and oxycodone in human liver microsomes using liquid chromatography with ultraviolet absorbance detection1. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 785, 81-88.	1.2	22
203	Diacetylmorphine degradation to 6-monoacetylmorphine and morphine in cell culture: implications for in vitro studies. European Journal of Pharmacology, 2002, 453, 27-32.	1.7	18
204	The future: new concepts and potential therapies. , 0, , 341-356.		0
205	Multi-coloured fluorescent sensing toolbox for selective detection of Nitroxyl in vitro and ex vivo. Sensors & Diagnostics, 0, , .	1.9	1