Carsten Marr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8212398/publications.pdf

Version: 2024-02-01

		159585	1	49698
79	3,830	30		56
papers	citations	h-index		g-index
			Ī	
108	108	108		6633
all docs	docs citations	times ranked		citing authors
108 all docs	108 docs citations	108 times ranked		6633 citing authors

#	Article	IF	Citations
1	<i>destiny</i> : diffusion maps for large-scale single-cell data in R. Bioinformatics, 2016, 32, 1241-1243.	4.1	518
2	A BaSiC tool for background and shading correction of optical microscopy images. Nature Communications, 2017, 8, 14836.	12.8	213
3	Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature, 2016, 535, 299-302.	27.8	180
4	Software tools for single-cell tracking and quantification of cellular and molecular properties. Nature Biotechnology, 2016, 34, 703-706.	17.5	162
5	Prospective identification of hematopoietic lineage choice by deep learning. Nature Methods, 2017, 14, 403-406.	19.0	160
6	Social Transfer of Pathogenic Fungus Promotes Active Immunisation in Ant Colonies. PLoS Biology, 2012, 10, e1001300.	5.6	158
7	Hierarchical Differentiation of Myeloid Progenitors Is Encoded in the Transcription Factor Network. PLoS ONE, 2011, 6, e22649.	2.5	137
8	Network plasticity of pluripotency transcription factors in embryonic stem cells. Nature Cell Biology, 2015, 17, 1235-1246.	10.3	130
9	Intronic microRNAs support their host genes by mediating synergistic and antagonistic regulatory effects. BMC Genomics, 2010, 11, 224.	2.8	126
10	Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks. Nature Machine Intelligence, 2019, 1, 538-544.	16.0	122
11	An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy. BMC Bioinformatics, 2013, 14, 297.	2.6	117
12	Entangled-state preparation via dissipation-assisted adiabatic passages. Physical Review A, 2003, 68, .	2.5	100
13	Dissecting the logical types of network control in gene expression profiles. BMC Systems Biology, 2008, 2, 18.	3.0	88
14	T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nature Biomedical Engineering, 2021, 5, 1246-1260.	22.5	80
15	Metabolic regulation of pluripotency and germ cell fate through αâ€ketoglutarate. EMBO Journal, 2019, 38, .	7.8	77
16	Stability and Multiattractor Dynamics of a Toggle Switch Based on a Two-Stage Model of Stochastic Gene Expression. Biophysical Journal, 2012, 102, 19-29.	0.5	76
17	Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine. Genome Biology, 2009, 10, R81.	9.6	71
18	Injury triggers fascia fibroblast collective cell migration to drive scar formation through N-cadherin. Nature Communications, 2020, 11, 5653.	12.8	66

#	Article	IF	Citations
19	Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set. Blood, 2021, 138, 1917-1927.	1.4	62
20	fastER: a user-friendly tool for ultrafast and robust cell segmentation in large-scale microscopy. Bioinformatics, 2017, 33, 2020-2028.	4.1	58
21	CHIP and hips: clonal hematopoiesis is common in patients undergoing hip arthroplasty and is associated with autoimmune disease. Blood, 2021, 138, 1727-1732.	1.4	58
22	Combined tumor-directed recruitment and protection from immune suppression enable CAR T cell efficacy in solid tumors. Science Advances, 2021, 7, .	10.3	56
23	Gene Networks with Transcriptional Bursting Recapitulate Rare Transient Coordinated High Expression States in Cancer. Cell Systems, 2020, 10, 363-378.e12.	6.2	54
24	Domain Model Explains Propagation Dynamics and Stability of Histone H3K27 and H3K36 Methylation Landscapes. Cell Reports, 2020, 30, 1223-1234.e8.	6.4	54
25	miTALOS: Analyzing the tissue-specific regulation of signaling pathways by human and mouse microRNAs. Rna, 2011, 17, 809-819.	3.5	52
26	MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology. IScience, 2020, 23, 101601.	4.1	44
27	Opposing effects of allogrooming on disease transmission in ant societies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140108.	4.0	43
28	Topology regulates pattern formation capacity of binary cellular automata on graphs. Physica A: Statistical Mechanics and Its Applications, 2005, 354, 641-662.	2.6	42
29	Single-cell gene expression profiling and cell state dynamics: collecting data, correlating data points and connecting the dots. Current Opinion in Biotechnology, 2016, 39, 207-214.	6.6	36
30	Increasing Neural Stem Cell Division Asymmetry and Quiescence Are Predicted to Contribute to the Age-Related Decline in Neurogenesis. Cell Reports, 2018, 25, 3231-3240.e8.	6.4	35
31	Live cell-lineage tracing and machine learning reveal patterns of organ regeneration. ELife, 2018, 7, .	6.0	35
32	Similar impact of topological and dynamic noise on complex patterns. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 349, 302-305.	2.1	30
33	Outer-totalistic cellular automata on graphs. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 546-549.	2.1	30
34	Analysis of Cell Lineage Trees by Exact Bayesian Inference Identifies Negative Autoregulation of Nanog in Mouse Embryonic Stem Cells. Cell Systems, 2016, 3, 480-490.e13.	6.2	30
35	Topology regulates the distribution pattern of excitations in excitable dynamics on graphs. Physical Review E, 2006, 74, 016112.	2.1	28
36	A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography. Photoacoustics, 2020, 20, 100203.	7.8	26

#	Article	IF	CITATIONS
37	A geometric analysis of fast-slow models for stochastic gene expression. Journal of Mathematical Biology, 2016, 72, 87-122.	1.9	25
38	Lineage marker synchrony in hematopoietic genealogies refutes the PU.1/GATA1 toggle switch paradigm. Nature Communications, 2018, 9, 2697.	12.8	24
39	Multiclass Deep Active Learning for Detecting Red Blood Cell Subtypes in Brightfield Microscopy. Lecture Notes in Computer Science, 2019, , 685-693.	1.3	24
40	Time-dependent propagators for stochastic models of gene expression: an analytical method. Journal of Mathematical Biology, 2018, 77, 261-312.	1.9	23
41	NG2-Glia Transiently Overcome Their Homeostatic Network and Contribute to Wound Closure After Brain Injury. Frontiers in Cell and Developmental Biology, 2021, 9, 662056.	3.7	23
42	Multiâ€scale modeling of GMP differentiation based on singleâ€cell genealogies. FEBS Journal, 2012, 279, 3488-3500.	4.7	19
43	Combinatorial Histone Acetylation Patterns Are Generated by Motif-Specific Reactions. Cell Systems, 2016, 2, 49-58.	6.2	19
44	Single-Cell Tracing Dissects Regulation of Maintenance and Inheritance of Transcriptional Reinduction Memory. Molecular Cell, 2020, 78, 915-925.e7.	9.7	18
45	N6-methyladenosine (m ⁶ A) depletion regulates pluripotency exit by activating signaling pathways in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
46	Regularizing capacity of metabolic networks. Physical Review E, 2007, 75, 041917.	2.1	16
47	Tissue-Specific Target Analysis of Disease-Associated MicroRNAs in Human Signaling Pathways. PLoS ONE, 2010, 5, e11154.	2.5	16
48	Patterns of Subnet Usage Reveal Distinct Scales of Regulation in the Transcriptional Regulatory Network of Escherichia coli. PLoS Computational Biology, 2010, 6, e1000836.	3.2	15
49	An adaptive scheduling scheme for calculating Bayes factors with thermodynamic integration using Simpson's rule. Statistics and Computing, 2016, 26, 663-677.	1.5	15
50	cgCorrect: a method to correct for confounding cell–cell variation due to cell growth in single-cell transcriptomics. Physical Biology, 2017, 14, 036001.	1.8	15
51	Tens of images can suffice to train neural networks for malignant leukocyte detection. Scientific Reports, 2021, 11, 7995.	3.3	15
52	SimiRa: A tool to identify coregulation between microRNAs and RNA-binding proteins. RNA Biology, 2015, 12, 998-1009.	3.1	14
53	Attention Based Multiple Instance Learning for Classification of Blood Cell Disorders. Lecture Notes in Computer Science, 2020, , 246-256.	1.3	13
54	Twist1 induces distinct cell states depending on TGFBR1-activation. Oncotarget, 2016, 7, 30396-30407.	1.8	12

#	Article	IF	Citations
55	A Topological Characterization of Medium-Dependent Essential Metabolic Reactions. Metabolites, 2012, 2, 632-647.	2.9	11
56	Cellular connectomes as arbiters of local circuit models in the cerebral cortex. Nature Communications, 2021, 12, 2785.	12.8	11
57	Cellular Automata on Graphs: Topological Properties of ER Graphs Evolved towards Low-Entropy Dynamics. Entropy, 2012, 14, 993-1010.	2.2	10
58	InstantDL: an easy-to-use deep learning pipeline for image segmentation and classification. BMC Bioinformatics, 2021, 22, 103.	2.6	10
59	MCA: Multiresolution Correlation Analysis, a graphical tool for subpopulation identification in single-cell gene expression data. BMC Bioinformatics, 2014, 15, 240.	2.6	9
60	Image analysis of neural stem cell division patterns in the zebrafish brain. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 314-322.	1.5	9
61	Biologically meaningful update rules increase the critical connectivity of generalized Kauffman networks. Journal of Theoretical Biology, 2010, 266, 436-448.	1.7	8
62	A case study on the use of scale separation-based analytical propagators for parameter inference in models of stochastic gene regulation. Journal of Coupled Systems and Multiscale Dynamics, 2015, 3, 164-173.	0.2	8
63	Automatic identification of relevant genes from low-dimensional embeddings of single-cell RNA-seq data. Bioinformatics, 2020, 36, 4291-4295.	4.1	7
64	Computational modeling of stem and progenitor cell kinetics identifies plausible hematopoietic lineage hierarchies. IScience, 2021, 24, 102120.	4.1	7
65	H4K20 Methylation Is Differently Regulated by Dilution and Demethylation in Proliferating and Cell-Cycle-Arrested Xenopus Embryos. Cell Systems, 2020, 11, 653-662.e8.	6.2	6
66	A single-cell micro-trench platform for automatic monitoring of cell division and apoptosis after chemotherapeutic drug administration. Scientific Reports, 2018, 8, 18042.	3.3	5
67	The value of longitudinal clinical data and paired CT scans in predicting the deterioration of COVID-19 revealed by an artificial intelligence system. IScience, 2022, 25, 104227.	4.1	5
68	Parameter inference with analytical propagators for stochastic models of autoregulated gene expression. International Journal of Nonlinear Sciences and Numerical Simulation, 2022, 23, 565-577.	1.0	4
69	Inference of spatiotemporal effects on cellular state transitions from time-lapse microscopy. BMC Systems Biology, 2015, 9, 61.	3.0	3
70	Centroid Clustering of Cellular Lineage Trees. Lecture Notes in Computer Science, 2014, , 15-29.	1.3	3
71	Reoccurring neural stem cell divisions in the adult zebrafish telencephalon are sufficient for the emergence of aggregated spatiotemporal patterns. PLoS Biology, 2020, 18, e3000708.	5.6	3
72	Structure-based assessment of cancerous mitochondria using deep networks. , 2016, , .		2

#	Article	IF	CITATIONS
73	Mechanistic models of blood cell fate decisions in the era of single-cell data. Current Opinion in Systems Biology, 2021, 28, 100355.	2.6	2
74	Reply to "Comment on â€~Regularizing capacity of metabolic networks' ― Physical Review E, 2008,	7 2 ,1	1
75	Fourier Transform of Percoll Gradients Boosts CNN Classification of Hereditary Hemolytic Anemias. , 2021, , .		1
76	Evaluation of Domain Adaptation Approaches for Robust Classification of Heterogeneous Biological Data Sets. Lecture Notes in Computer Science, 2019, , 673-686.	1.3	1
77	In-Silico Staining from Bright-Field and Fluorescent Images Using Deep Learning. Lecture Notes in Computer Science, 2019, , 184-186.	1.3	1
78	Histopathology-Based Deep-Learning Predicts Atherosclerotic Lesions in Intravascular Imaging. Frontiers in Cardiovascular Medicine, 2021, 8, 779807.	2.4	1
79	MicroRNA as an Integral Part of Cell Communication: Regularized Target Prediction and Network Prediction. Lecture Notes in Bioengineering, 2018, , 85-100.	0.4	0