Cheng Qiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8212281/publications.pdf Version: 2024-02-01

		257357	345118
104	1,794	24	36
papers	citations	h-index	g-index
112	112	112	1043
all docs	docs citations	times ranked	citing authors

CHENC OLANC

#	Article	IF	CITATIONS
1	Study on CO2 gasification properties and kinetics of biomass chars and anthracite char. Bioresource Technology, 2015, 177, 66-73.	4.8	161
2	Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace. Applied Energy, 2020, 266, 114818.	5.1	86
3	Application of BP neural network to the prediction of coal ash melting characteristic temperature. Fuel, 2020, 260, 116324.	3.4	75
4	Influence of alkaline (Na, K) vapors on carbon and mineral behavior in blast furnace cokes. Fuel, 2015, 145, 202-213.	3.4	67
5	Catalytic graphitization of coke carbon by iron: Understanding the evolution of carbon Structure, morphology and lattice fringes. Fuel, 2020, 279, 118531.	3.4	48
6	Dissection Investigation of Ti(C,N) Behavior in Blast Furnace Hearth during Vanadium Titano-magnetite Smelting. ISIJ International, 2017, 57, 48-54.	0.6	47
7	Physiochemical, structural and combustion properties of hydrochar obtained by hydrothermal carbonization of waste polyvinyl chloride. Fuel, 2020, 270, 117526.	3.4	45
8	A molecular dynamic simulation on the factors influencing the fluidity of molten coke ash during alkalization with K2O and Na2O. Chemical Engineering Journal, 2017, 313, 1184-1193.	6.6	44
9	ReaxFF Molecular Dynamics Simulation for the Graphitization of Amorphous Carbon: A Parametric Study. Journal of Chemical Theory and Computation, 2018, 14, 2322-2331.	2.3	44
10	Molecular Dynamics Simulation on the Effect of MgO/Al2O3 Ratio on Structure and Properties of Blast Furnace Slag Under Different Basicity Conditions. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 367-375.	1.0	42
11	Physicochemical properties evolution of chars from palm kernel shell pyrolysis. Journal of Thermal Analysis and Calorimetry, 2018, 133, 1271-1280.	2.0	41
12	Mathematical Modeling of the Energy Consumption and Carbon Emission for the Oxygen Blast Furnace with Top Gas Recycling. Steel Research International, 2016, 87, 320-329.	1.0	36
13	Numerical simulation of combustion behaviors of hydrochar derived from low-rank coal in the raceway of blast furnace. Fuel, 2020, 278, 118267.	3.4	35
14	Review on biomass metallurgy: Pretreatment technology, metallurgical mechanism and process design. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1133-1149.	2.4	35
15	Graphitization of Coke and Its Interaction with Slag in the Hearth of a Blast Furnace. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 811-818.	1.0	32
16	Interfaces Between Coke, Slag, and Metal in the Tuyere Level of a Blast Furnace. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 1104-1111.	1.0	30
17	Viscosity measurement and prediction model of molten iron. Ironmaking and Steelmaking, 2018, 45, 773-777.	1.1	30
18	Sintering neck growth mechanism of Fe nanoparticles: A molecular dynamics simulation. Chemical Engineering Science, 2020, 218, 115583.	1.9	30

#	Article	lF	CITATIONS
19	Effect of MnO on High-Alumina Slag Viscosity and Corrosion Behavior of Refractory in Slags. ISIJ International, 2017, 57, 1887-1894.	0.6	29
20	Characteristics of novel Ti–10Mo-xCu alloy by powder metallurgy for potential biomedical implant applications. Bioactive Materials, 2020, 5, 659-666.	8.6	29
21	Zinc Accumulation and Behavior in Tuyere Coke. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 1581-1588.	1.0	28
22	Devolatilization Characteristics and Kinetic Analysis of Lump Coal from China COREX3000 Under High Temperature. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 2535-2548.	1.0	26
23	The interaction of nanoparticulate Fe2O3 in the sintering process: A molecular dynamics simulation. Powder Technology, 2020, 367, 97-104.	2.1	26
24	Isothermal kinetic analysis on fast pyrolysis of lump coal used in COREX process. Journal of Thermal Analysis and Calorimetry, 2016, 123, 773-783.	2.0	24
25	Analysis of the Relationship between Productivity and Hearth Wall Temperature of a Commercial Blast Furnace and Model Prediction. Steel Research International, 2017, 88, 1600475.	1.0	24
26	Design and performance evaluation of additively manufactured composite lattice structures of commercially pure Ti (CP–Ti). Bioactive Materials, 2021, 6, 1215-1222.	8.6	23
27	Characteristics and kinetic analysis of co-combustion of brown coal and anthracite. Journal of Thermal Analysis and Calorimetry, 2016, 126, 447-454.	2.0	22
28	Advanced converter sludge utilization technologies for the recovery of valuable elements: A review. Journal of Hazardous Materials, 2020, 381, 120902.	6.5	22
29	The influence of basicity and TiO ₂ on the crystallization behavior of high Ti-bearing slags. CrystEngComm, 2020, 22, 361-370.	1.3	21
30	A Prediction Model of Blast Furnace Slag Viscosity Based on Principal Component Analysis and K-Nearest Neighbor Regression. Jom, 2020, 72, 3908-3916.	0.9	20
31	Effect of Chlorine on the Viscosities and Structures of CaO-SiO2-CaCl2 Slags. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 328-334.	1.0	18
32	Atomic-Scale Understanding about Coke Carbon Structural Evolution by Experimental Characterization and ReaxFF Molecular Dynamics. Energy & Fuels, 2019, 33, 10941-10952.	2.5	18
33	Review of viscosity prediction models of liquid pure metals and alloys. Philosophical Magazine, 2019, 99, 853-868.	0.7	18
34	Molecular Dynamics Investigation on Coke Ash Behavior in the High-Temperature Zones of a Blast Furnace: Influence of Alkalis. Energy & Fuels, 2017, 31, 13466-13474.	2.5	17
35	Graphitization Behavior of Coke in the Cohesive Zone. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 2956-2962.	1.0	17
36	High-temperature capture of CO2 by Li4SiO4 prepared with blast furnace slag and kinetic analysis. Journal of Thermal Analysis and Calorimetry, 2018, 133, 981-989.	2.0	17

#	Article	IF	CITATIONS
37	Erosion of Carbon Brick by Zinc in Hearth of Blast Furnace. ISIJ International, 2020, 60, 226-232.	0.6	17
38	Structural Characteristics of CaO-SiO2-Al2O3-FeO Slag with Various FeO Contents Based on Molecular Dynamics Simulations. Jom, 2021, 73, 1637-1645.	0.9	17
39	Thermal behaviors and growth of reduced ferronickel particles in carbon-laterite composites. Rare Metals, 2011, 30, 681-687.	3.6	16
40	Influence Mechanism of Lignite and Lignite Semi-coke Addition on Drum Strength of Coke. ISIJ International, 2018, 58, 253-258.	0.6	16
41	Influence of Structure and Mineral Association of Tuyere-Level Coke on Gasification Process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 2611-2621.	1.0	15
42	Experiments and Kinetic Modeling for Reduction of Ferric Oxide-biochar Composite Pellets. ISIJ International, 2017, 57, 1374-1383.	0.6	14
43	Behavior of Alkali Accumulation of Coke in the Cohesive Zone. Energy & Fuels, 2018, 32, 8383-8391.	2.5	14
44	Status, technological progress, and development directions of the ironmaking industry in China. Ironmaking and Steelmaking, 2019, 46, 937-941.	1.1	14
45	Cold Strength and High Temperature Behaviors of Self-Reducing Briquette Containing Electric Arc Furnace Dust and Anthracite. ISIJ International, 2017, 57, 1364-1373.	0.6	13
46	Phase and mineral behavior of coke in cohesive zone. Fuel, 2019, 253, 32-39.	3.4	13
47	Effect of MgO/Al ₂ O ₃ Ratio on Viscosity of Blast Furnace Primary Slag. High Temperature Materials and Processes, 2019, 38, 354-361.	0.6	13
48	Novel sintering indexes to evaluate and correlate the crystal characteristics and compressive strength in magnetite pellets. Powder Technology, 2020, 362, 517-526.	2.1	13
49	Research on the Combustion Characteristics and Kinetic Analysis of the Recycling Dust for a COREX Furnace. Energies, 2017, 10, 255.	1.6	12
50	Study on CO ₂ Gasification Reactivity and Structure Characteristics of Carbonaceous Materials from the Corex Furnace. Energy & Fuels, 2018, 32, 6155-6166.	2.5	12
51	Damage mechanism of blast furnace tuyere by zinc. Ironmaking and Steelmaking, 2018, 45, 560-565.	1.1	11
52	Distribution of harmful elements in dissected 125â€m ³ blast furnace. Canadian Metallurgical Quarterly, 2019, 58, 400-409.	0.4	11
53	Machine Learning Modeling of Gas Utilization Rate in Blast Furnace. Jom, 2022, 74, 1633-1640.	0.9	11
54	Effects of Preâ€Reduction Degree of Ironsand on Slag Properties in Melting Separation Process. Steel Research International, 2018, 89, 1700363.	1.0	10

#	Article	IF	CITATIONS
55	The interaction of nanoparticulate Fe3O4 during the diffusion-limited aggregation process: A molecular dynamics simulation. Powder Technology, 2021, 384, 141-147.	2.1	10
56	Gaseous Reduction of Titania-ferrous Solution Ore by H ₂ –Ar Mixture. ISIJ International, 2017, 57, 443-452.	0.6	9
57	Rings growth behavior within a pre-reduction rotary kiln: The layered structure and formation mechanism. Powder Technology, 2019, 356, 73-82.	2.1	9
58	Graphitization and Performance of Deadman Coke in a Large Dissected Blast Furnace. ACS Omega, 2021, 6, 25430-25439.	1.6	9
59	Melting Features and Viscosity of TiO ₂ -Containing Primary Slag in a Blast Furnace. High Temperature Materials and Processes, 2018, 37, 149-156.	0.6	8
60	Mineralogical Characteristics and Isothermal Oxidation Kinetics of Ironsand Pellets. Metals, 2019, 9, 265.	1.0	8
61	Occurrence State and Behavior of Carbon Brick Brittle in a Large Dissected Blast Furnace Hearth. Steel Research International, 2021, 92, 2100273.	1.0	8
62	Central Band Structures: New Insights into the Coupling Effects Between the Pores and Minerals of Sinter. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 607-616.	1.0	7
63	Assessment on the effect of unburned pulverized coal on the properties of coke in blast furnace. Ironmaking and Steelmaking, 2020, 47, 228-237.	1.1	7
64	Investigation of Formation and Shedding Behavior of Slag Crust in a Large Blast Furnace with Copper Stave: Flow Properties and Crystallization Characteristics. Journal of Sustainable Metallurgy, 2021, 7, 506-518.	1.1	7
65	Characterization of Ti(C,N) Superstructure Derived from Hot Metal. ISIJ International, 2021, 61, 138-145.	0.6	7
66	Predictive Modeling of Blast Furnace Gas Utilization Rate Using Different Data Pre-Processing Methods. Metals, 2022, 12, 535.	1.0	7
67	Effects of permanent magnetic field on calcium carbonate scaling of circulating water. Desalination and Water Treatment, 0, , 1-11.	1.0	6
68	Optimization of the Number of Burner Nozzles in a Hot Blast Stove by the Way of Simulation. Jom, 2014, 66, 1241-1252.	0.9	6
69	Microstructure and Phase Transformation of a Sinter Bearing Low Ti During Reduction. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 3046-3055.	1.0	6
70	Gasification Characteristics and Kinetics of Coke with Chlorine Addition. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 2428-2439.	1.0	6
71	Transferability of interatomic potentials with insights into the structure–property relationship of SiO ₂ –CaO–MgO–Al ₂ O ₃ melts. Molecular Simulation, 2020, 46, 289-299.	0.9	6
72	Feasibility Study of Bio-Sludge Hydrochar as Blast Furnace Injectant. Sustainability, 2022, 14, 5510.	1.6	6

#	Article	IF	CITATIONS
73	Synthesis and Non-isothermal Carbothermic Reduction of FeTiO3-Fe2O3 Solid Solution Systems. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 2419-2427.	1.0	5
74	Effect of coal blending on ash fusion behavior for blast furnace injection of high calcium bituminous coal. Energy Science and Engineering, 2019, 7, 3332-3343.	1.9	5
75	Insights into phase and mineral matter of metallurgical coke in cohesive zone. Fuel, 2019, 254, 115707.	3.4	5
76	Formation of Multiple Microstructures During the Reduction of Ironsand. Jom, 2019, 71, 1776-1784.	0.9	5
77	Three-body aggregation of Fe2O3 nanoparticles: A molecular dynamics simulation. Chemical Physics Letters, 2020, 760, 137901.	1.2	5
78	Melting Erosion Failure Mechanism of Tuyere in Blast Furnace. ISIJ International, 2021, 61, 71-78.	0.6	5
79	Experimental and molecular dynamics examination of the interface interaction between magnesium oxide and magnetite in a high temperature oxidation environment. Materials and Design, 2022, 215, 110434.	3.3	5
80	A density functional theory study on the adsorption reaction mechanism of double CO2 on the surface of graphene defects. Journal of Molecular Modeling, 2022, 28, 118.	0.8	5
81	Comparative Analysis on the Corrosion Resistance to Molten Iron of Four Kinds of Carbon Bricks Used in Blast Furnace Hearth. Metals, 2022, 12, 871.	1.0	5
82	Energy Conservation for Granular Coal Injection into a Blast Furnace. Jom, 2012, 64, 1002-1010.	0.9	4
83	Novel Recognition Method of Blast Furnace Dust Composition by Multifeature Analysis Based on Comprehensive Image-Processing Techniques. Jom, 2014, 66, 2377-2389.	0.9	4
84	Effect of Carbonization Conditions on the Property and Structure of Bamboo Char for Injection in Blast Furnace. ISIJ International, 2019, 59, 442-449.	0.6	4
85	Relationship between interaction under non-load condition and softening & melting behaviour of typical blast furnace feed. Ironmaking and Steelmaking, 2022, 49, 626-633.	1.1	4
86	Lump Iron Ore Pre-heating Treatment to Improve Softening-Melting Performance and Reduce Energy Consumption in Ironmaking Process. Jom, 2022, 74, 2733-2741.	0.9	4
87	Improvement of the Blast Furnace Viscosity Prediction Model Based on Discrete Points Data. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 378-387.	1.0	3
88	Study on Carbothermal Reduction of Titania in Molten Iron. High Temperature Materials and Processes, 2019, 38, 143-150.	0.6	3
89	Effect of Ash on Coal Combustion Performance and Kinetics Analysis. Combustion Science and Technology, 2022, 194, 785-800.	1.2	3
90	Study on Chemical Bond Dissociation and the Removal of Oxygen-Containing Functional Groups of Low-Rank Coal during Hydrothermal Carbonization: DFT Calculations. ACS Omega, 2021, 6, 25772-25781.	1.6	3

#	Article	IF	CITATIONS
91	New Insights into the Traditional Charge Compensation Theory: Amphoteric Behavior of TiO ₂ under the Guidance of Supply–Demand Relationship. ACS Omega, 2022, 7, 21225-21232.	1.6	3
92	Study on the Structure and Properties of High-Calcium Coal Ash in the High-Temperature Zone of a Blast Furnace: A Molecular Dynamics Simulation Investigation. Jom, 2020, 72, 2713-2720.	0.9	2
93	Model and application of hearth activity in a commercial blast furnace. Ironmaking and Steelmaking, 2021, 48, 742-748.	1.1	2
94	The Effects of FeO and Fe2O3 on the Structure and Properties of Aluminosilicate System: A Molecular Dynamics Study. Jom, 2022, 74, 4162-4173.	0.9	2
95	Compound Use of Chemical Waste as Flux in Iron Ore Sintering. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2022, 53, 2143-2152.	1.0	2
96	Factors Influencing Gas Generation Behaviours of Lump Coal Used in COREX Gasifier. High Temperature Materials and Processes, 2019, 38, 30-41.	0.6	1
97	A Comprehensive Study of Pore Characteristics, Formation Mechanism and Reliability Analysis with Advanced Characterization Methods Within Pellets. Transactions of the Indian Institute of Metals, 2020, 73, 2503-2510.	0.7	1
98	The Concurrent Sintering-Crystallization Behavior of Fluoride-Containing Wollastonite Glass-Ceramics. Materials, 2021, 14, 681.	1.3	1
99	Effect of CO–CO ₂ and H ₂ –H ₂ O on the reduction degree of fluxed pellets: reduction mechanism within hydrogen-rich blast furnace. Ironmaking and Steelmaking, 2022, 49, 932-939.	1.1	1
100	Migration Behavior of K, Na, S, Ti in Hearth of a Commercial Blast Furnace. ISIJ International, 2022, 62, 2236-2243.	0.6	1
101	Combustion-Supporting Effect of Common Carbonous Solid Waste on Anthracites. Jom, 2012, 64, 1011-1016.	0.9	0
102	Research on Simultaneous Injection of Waste Tires with Pulverized Coal for Blast Furnace. Ceramic Transactions, 2015, , 135-144.	0.1	0
103	The interaction of nanoparticulate Fe with vacancies during melting and sintering: A molecular dynamics simulation. AIP Advances, 2022, 12, 055330.	0.6	0
104	Reinforcement of Pellet Consolidation Strength Based on Iron Filings: Microstructural Evolution and Mechanism. Steel Research International, 0, , .	1.0	0