Liyi Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8212233/publications.pdf

Version: 2024-02-01

434195 430874 1,562 43 18 31 citations h-index g-index papers 43 43 43 2488 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Vertically Aligned and Interconnected Graphene Networks for High Thermal Conductivity of Epoxy Composites with Ultralow Loading. Chemistry of Materials, 2016, 28, 6096-6104.	6.7	325
2	Water-dispersible graphene/polyaniline composites for flexible micro-supercapacitors with high energy densities. Nano Energy, 2015, 16, 470-478.	16.0	151
3	Triethanolamine functionalized graphene-based composites for high performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 21789-21796.	10.3	112
4	Flexible micro-supercapacitor based on in-situ assembled graphene on metal template at room temperature. Nano Energy, 2014, 10, 222-228.	16.0	111
5	Rational Design of a Printable, Highly Conductive Siliconeâ€based Electrically Conductive Adhesive for Stretchable Radioâ€Frequency Antennas. Advanced Functional Materials, 2015, 25, 464-470.	14.9	109
6	Uniform Vertical Trench Etching on Silicon with High Aspect Ratio by Metal-Assisted Chemical Etching Using Nanoporous Catalysts. ACS Applied Materials & Samp; Interfaces, 2014, 6, 575-584.	8.0	95
7	Growth of Large-Size SnS Thin Crystals Driven by Oriented Attachment and Applications to Gas Sensors and Photodetectors. ACS Applied Materials & Sensors and Photodetectors. ACS Applied Materials & Sensors and Photodetectors.	8.0	94
8	Molecular engineering of aromatic amine spacers for high-performance graphene-based supercapacitors. Nano Energy, 2016, 21, 276-294.	16.0	61
9	Deep Etching of Single- and Polycrystalline Silicon with High Speed, High Aspect Ratio, High Uniformity, and 3D Complexity by Electric Bias-Attenuated Metal-Assisted Chemical Etching (EMaCE). ACS Applied Materials & Description (EMaCE).	8.0	51
10	Controlling Kink Geometry in Nanowires Fabricated by Alternating Metal-Assisted Chemical Etching. Nano Letters, 2017, 17, 1014-1019.	9.1	50
11	Fabricating and Controlling Silicon Zigzag Nanowires by Diffusion-Controlled Metal-Assisted Chemical Etching Method. Nano Letters, 2017, 17, 4304-4310.	9.1	48
12	Ultrafast Molecular Stitching of Graphene Films at the Ethanol/Water Interface for High Volumetric Capacitance. Nano Letters, 2017, 17, 1365-1370.	9.1	42
13	Synthesis of Few-Atomic-Layer BN Hollow Nanospheres and Their Applications as Nanocontainers and Catalyst Support Materials. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1578-1582.	8.0	33
14	Formation of Through Silicon Vias for Silicon Interposer in Wafer Level by Metal-Assisted Chemical Etching. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5, 1039-1049.	2.5	32
15	Hybrid Anodic and Metalâ€Assisted Chemical Etching Method Enabling Fabrication of Silicon Carbide Nanowires. Small, 2019, 15, e1803898.	10.0	31
16	Anisotropic Charge Transport Enabling Highâ€Throughput and Highâ€Aspectâ€Ratio Wet Etching of Silicon Carbide. Small Methods, 2022, 6, .	8.6	27
17	In situ assembly of dispersed Ag nanoparticles on hierarchically porous organosilica microspheres for controllable reduction of 4-nitrophenol. Journal of Materials Science, 2015, 50, 3399-3408.	3.7	20
18	Charge Transport in Uniform Metal-Assisted Chemical Etching for 3D High-Aspect-Ratio Micro- and Nanofabrication on Silicon. ECS Journal of Solid State Science and Technology, 2015, 4, P337-P346.	1.8	18

#	Article	IF	Citations
19	Uniform Metal-Assisted Chemical Etching for Ultra-High-Aspect-Ratio Microstructures on Silicon. Journal of Microelectromechanical Systems, 2019, 28, 143-153.	2.5	18
20	Defect inspection of flip chip package using SAM technology and fuzzy C-means algorithm. Science China Technological Sciences, 2018, 61, 1426-1430.	4.0	15
21	Evolution of Etching Kinetics and Directional Transition of Nanowires Formed on Pyramidal Microtextures. Chemistry - an Asian Journal, 2014, 9, 93-99.	3.3	12
22	Effects of Defects on the Mechanical Properties of Kinked Silicon Nanowires. Nanoscale Research Letters, 2017, 12, 185.	5.7	11
23	A facile and low-cost route to high-aspect-ratio microstructures on silicon via a judicious combination of flow-enabled self-assembly and metal-assisted chemical etching. Journal of Materials Chemistry C, 2016, 4, 8953-8961.	5 . 5	9
24	Intelligent diagnosis of the solder bumps defects using fuzzy C-means algorithm with the weighted coefficients. Science China Technological Sciences, 2015, 58, 1689-1695.	4.0	8
25	Low-cost micrometer-scale silicon vias (SVs) fabrication by metal-assisted chemical etching (MaCE) and carbon nanotubes (CNTs) filling. , 2013, , .		7
26	Highly Conductive Polyurethane/Polyaniline-Based Composites for Wearable Electronic Applications. , 2016, , .		7
27	UVAâ€shielding silicone/zinc oxide nanocomposite coating for automobile windows. Polymer Composites, 2016, 37, 2053-2057.	4.6	7
28	Design and fabrication of inverted tapered micro-pillars for spontaneously transporting liquid upward. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	7
29	High aspect ratio sub-100 nm silicon vias (SVs) by metal-assisted chemical etching (MaCE) and copper filling. , 2013, , .		6
30	Solution-processed flexible solid-state micro-supercapacitors for on-chip energy storage devices. , 2015, , .		6
31	Formation of Polymer Insulation Layer (Liner) on Through Silicon Vias (TSV) with High Aspect Ratio over 5:1 by Direct Spin Coating. , 2016, , .		6
32	High-aspect-ratio microstructures with versatile slanting angles on silicon by uniform metal-assisted chemical etching. Journal of Micromechanics and Microengineering, 2018, 28, 055006.	2.6	5
33	Enhanced micro-supercapacitors in aqueous electrolyte based on Si nanowires coated with TiO2. Journal of Materials Science: Materials in Electronics, 2019, 30, 8763-8770.	2.2	5
34	Wet etching of deep trenches on silicon with three-dimensional (3D) controllability. , 2014, , .		4
35	Uniform Metal-assisted Chemical Etching and the Stability of Catalysts. Materials Research Society Symposia Proceedings, 2015, 1801, 1-8.	0.1	4
36	Wafer-level wet etching of high-aspect-ratio through silicon vias (TSVs) with high uniformity and low cost for silicon interposers with high-density interconnect of 3D packaging., 2015,,.		4

#	Article	IF	Citations
37	High-speed wet etching of through silicon vias (TSVs) in micro- and nanoscale. , 2014, , .		3
38	Formation of High-Aspect-Ratio through Silicon Vias (TSVs) with a Broad Range of Diameter by Uniform Metal-Assisted Chemical Etching (MaCE). , 2016 , , .		3
39	A high-performance TiO2 nanotube supercapacitor by tuning heating rate during H2 thermal annealing. Journal of Materials Science: Materials in Electronics, 2018, 29, 15130-15137.	2.2	3
40	Stretchable/printed RF devices via high-throughput, high-definability soft-lithography fabrication. , 2013, , .		1
41	Anodic TiO2 nanotube supercapacitors enhanced by a facile in situ doping method. Journal of Materials Science: Materials in Electronics, 2019, 30, 20892-20898.	2.2	1
42	Silicon Nanowires Passivated by TiO <inf>2</inf> Layer for Supercapacitors in Aqueous Electrolyte. , 2018, , .		0
43	Formation of Graphene–Silicon Junction by Room Temperature Reduction With Simultaneous Defects Removal. IEEE Transactions on Electron Devices, 2021, 68, 873-878.	3.0	0