Andras Rab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8212189/publications.pdf Version: 2024-02-01

ANDDAS PAR

#	Article	IF	CITATIONS
1	Targeted Gene Insertion for Functional CFTR Restoration in Airway Epithelium. Frontiers in Genome Editing, 2022, 4, 847645.	5.2	1
2	Derivation of Airway Basal Stem Cells from Human Pluripotent Stem Cells. Cell Stem Cell, 2021, 28, 79-95.e8.	11.1	119
3	The CFTR P67L variant reveals a key role for N-terminal lasso helices in channel folding, maturation, and pharmacologic rescue. Journal of Biological Chemistry, 2021, 296, 100598.	3.4	26
4	Stability Prediction for Mutations in the Cytosolic Domains of Cystic Fibrosis Transmembrane Conductance Regulator. Journal of Chemical Information and Modeling, 2021, 61, 1762-1777.	5.4	7
5	A small molecule that induces translational readthrough of CFTR nonsense mutations by eRF1 depletion. Nature Communications, 2021, 12, 4358.	12.8	59
6	Highly Efficient Gene Editing of Cystic Fibrosis Patient-Derived Airway Basal Cells Results in Functional CFTR Correction. Molecular Therapy, 2020, 28, 1684-1695.	8.2	48
7	G551D mutation impairs PKA-dependent activation of CFTR channel that can be restored by novel GOF mutations. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L770-L785.	2.9	5
8	VX-770-mediated potentiation of numerous human CFTR disease mutants is influenced by phosphorylation level. Scientific Reports, 2019, 9, 13460.	3.3	32
9	Slowing ribosome velocity restores folding and function of mutant CFTR. Journal of Clinical Investigation, 2019, 129, 5236-5253.	8.2	36
10	VX-770-Mediated Potentiation of Numerous Human CFTR Disease Mutants is Influenced by Phosphorylation Level. Biophysical Journal, 2018, 114, 488a.	0.5	0
11	Residual function of cystic fibrosis mutants predicts response to small molecule CFTR modulators. JCI Insight, 2018, 3, .	5.0	86
12	In Vitro Longitudinal Relaxivity Profile of Gd(ABE-DTTA), an Investigational Magnetic Resonance Imaging Contrast Agent. PLoS ONE, 2016, 11, e0149260.	2.5	7
13	Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators. PLoS ONE, 2016, 11, e0152232.	2.5	31
14	ΔF508 CFTR Surface Stability Is Regulated by DAB2 and CHIP-Mediated Ubiquitination in Post-Endocytic Compartments. PLoS ONE, 2015, 10, e0123131.	2.5	29
15	Chymase Mediates Injury and Mitochondrial Damage in Cardiomyocytes during Acute Ischemia/Reperfusion in the Dog. PLoS ONE, 2014, 9, e94732.	2.5	39
16	The silent codon change I507â€ATC→ATT contributes to the severity of the ΔF508 CFTR channel dysfunction. FASEB Journal, 2013, 27, 4630-4645.	0.5	60
17	Cigarette smoke and CFTR: implications in the pathogenesis of COPD. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L530-L541.	2.9	133
18	Dab2 is a key regulator of endocytosis and post-endocytic trafficking of the cystic fibrosis transmembrane conductance regulator. Biochemical Journal, 2012, 441, 633-643.	3.7	34

Andras Rab

#	Article	IF	CITATIONS
19	CFTR Expression Regulation by the Unfolded Protein Response. Methods in Enzymology, 2011, 491, 3-24.	1.0	43
20	The Unfolded Protein Response (UPR)-activated Transcription Factor X-box-binding Protein 1 (XBP1) Induces MicroRNA-346 Expression That Targets the Human Antigen Peptide Transporter 1 (TAP1) mRNA and Governs Immune Regulatory Genes. Journal of Biological Chemistry, 2011, 286, 41862-41870.	3.4	134
21	O-GlcNAc modification of proteins affects volume regulation in Jurkat cells. European Biophysics Journal, 2010, 39, 1207-1217.	2.2	10
22	The Mechanism of Cystic Fibrosis Transmembrane Conductance Regulator Transcriptional Repression during the Unfolded Protein Response. Journal of Biological Chemistry, 2008, 283, 12154-12165.	3.4	66
23	Activation of the Unfolded Protein Response by ΔF508 CFTR. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 448-457.	2.9	84
24	Endoplasmic reticulum stress and the unfolded protein response regulate genomic cystic fibrosis transmembrane conductance regulator expression. American Journal of Physiology - Cell Physiology, 2007, 292, C756-C766.	4.6	66
25	Restoration of W1282X CFTR Activity by Enhanced Expression. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 347-356.	2.9	59
26	VCP/p97 AAA-ATPase Does Not Interact with the Endogenous Wild-Type Cystic Fibrosis Transmembrane Conductance Regulator. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 706-714.	2.9	13
27	Hexose phosphorylation and the putative calcium channel component Mid1p are required for the hexose-induced transient elevation of cytosolic calcium response in Saccharomyces cerevisiae. Molecular Microbiology, 2002, 44, 1299-1308.	2.5	34