Nicolas Levy

List of Publications by Citations

Source: https://exaly.com/author-pdf/82118/nicolas-levy-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 243
 9,656
 51
 90

 papers
 citations
 h-index
 g-index

 276
 11,261
 5.8
 5.42

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
243	Lamin a truncation in Hutchinson-Gilford progeria. <i>Science</i> , 2003 , 300, 2055	33.3	997
242	Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. <i>American Journal of Human Genetics</i> , 2002 , 70, 726-36	11	449
241	Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. <i>Nature Medicine</i> , 2008 , 14, 767-72	50.5	300
240	Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. <i>Human Molecular Genetics</i> , 2004 , 13, 2493-503	5.6	290
239	Ataluren treatment of patients with nonsense mutation dystrophinopathy. <i>Muscle and Nerve</i> , 2014 , 50, 477-87	3.4	281
238	Splicing-directed therapy in a new mouse model of human accelerated aging. <i>Science Translational Medicine</i> , 2011 , 3, 106ra107	17.5	240
237	Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors. <i>Human Molecular Genetics</i> , 2005 , 14, 1503-13	5.6	237
236	SRPX2 mutations in disorders of language cortex and cognition. <i>Human Molecular Genetics</i> , 2006 , 15, 1195-207	5.6	213
235	Phenotypic study in 40 patients with dysferlin gene mutations: high frequency of atypical phenotypes. <i>Archives of Neurology</i> , 2007 , 64, 1176-82		196
234	Genotype-phenotype correlation in Costello syndrome: HRAS mutation analysis in 43 cases. <i>Journal of Medical Genetics</i> , 2006 , 43, 401-5	5.8	174
233	Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. <i>Skeletal Muscle</i> , 2011 , 1, 34	5.1	160
232	Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome. <i>American Journal of Human Genetics</i> , 2011 , 88, 650-6	11	148
231	Molecular bases of progeroid syndromes. <i>Human Molecular Genetics</i> , 2006 , 15 Spec No 2, R151-61	5.6	139
230	Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. <i>American Journal of Human Genetics</i> , 2013 , 92, 271-8	11	133
229	Unique preservation of neural cells in Hutchinson- Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA. <i>Cell Reports</i> , 2012 , 2, 1-9	10.6	129
228	Mutations in FGD4 encoding the Rho GDP/GTP exchange factor FRABIN cause autosomal recessive Charcot-Marie-Tooth type 4H. <i>American Journal of Human Genetics</i> , 2007 , 81, 1-16	11	127
227	Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correlation. <i>Brain</i> , 2009 , 132, 2699-711	11.2	118

(2019-2007)

226	Primary laminopathy fibroblasts display altered genome organization and apoptosis. <i>Aging Cell</i> , 2007 , 6, 139-53	9.9	118	
225	SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. <i>American Journal of Human Genetics</i> , 2012 , 90, 689-92	11	108	
224	Serotonin transporter (5-HTT) gene polymorphisms are not associated with susceptibility to mood disorders. <i>American Journal of Medical Genetics Part A</i> , 1998 , 81, 1-3		103	
223	VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy. <i>Acta Neuropathologica</i> , 2013 , 125, 439-57	14.3	101	
222	Sequence family variant loss from the AZFc interval of the human Y chromosome, but not gene copy loss, is strongly associated with male infertility. <i>Journal of Medical Genetics</i> , 2004 , 41, 814-25	5.8	101	
221	SHAPE AND TEXTURE INDEXES APPLICATION TO CELL NUCLEI CLASSIFICATION. <i>International Journal of Pattern Recognition and Artificial Intelligence</i> , 2013 , 27, 1357002	1.1	98	
220	CAPN3 mutations in patients with idiopathic eosinophilic myositis. <i>Annals of Neurology</i> , 2006 , 59, 905-1	19.4	98	
219	UMD-Predictor: A High-Throughput Sequencing Compliant System for Pathogenicity Prediction of any Human cDNA Substitution. <i>Human Mutation</i> , 2016 , 37, 439-46	4.7	86	
218	Dysferlin mutations in LGMD2B, Miyoshi myopathy, and atypical dysferlinopathies. <i>Human Mutation</i> , 2005 , 26, 165	4.7	85	
217	Fine mapping of de novo CMT1A and HNPP rearrangements within CMT1A-REPs evidences two distinct sex-dependent mechanisms and candidate sequences involved in recombination. <i>Human Molecular Genetics</i> , 1998 , 7, 141-8	5.6	79	
216	Random walk with restart on multiplex and heterogeneous biological networks. <i>Bioinformatics</i> , 2019 , 35, 497-505	7.2	78	
215	Analysis of the DYSF mutational spectrum in a large cohort of patients. Human Mutation, 2009, 30, E345	5-47. 5	78	
214	Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping. <i>Human Mutation</i> , 2010 , 31, 136-42	4.7	75	
213	HGPS and related premature aging disorders: from genomic identification to the first therapeutic approaches. <i>Mechanisms of Ageing and Development</i> , 2008 , 129, 449-59	5.6	75	
212	Relation of body mass index to high on-treatment platelet reactivity and of failed clopidogrel dose adjustment according to platelet reactivity monitoring in patients undergoing percutaneous coronary intervention. <i>American Journal of Cardiology</i> , 2009 , 104, 1511-5	3	73	
211	Demyelinating X-linked Charcot-Marie-Tooth disease: unusual electrophysiological findings. <i>Muscle and Nerve</i> , 1999 , 22, 1442-7	3.4	72	
210	Next generation sequencing for molecular diagnosis of neuromuscular diseases. <i>Acta Neuropathologica</i> , 2012 , 124, 273-83	14.3	70	
209	Development and Validation of a New Risk Prediction Score for Life-Threatening Ventricular Tachyarrhythmias in Laminopathies. <i>Circulation</i> , 2019 , 140, 293-302	16.7	63	
	25 24 23 22 21 20 19 18 17 16 15 14	SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. American Journal of Human Genetics, 2012, 90, 689-92 Scorotonin transporter (S-HTT) gene polymorphisms are not associated with susceptibility to mood disorders. American Journal of Medical Genetics Part A, 1998, 81, 1-3 VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy. Acta Neuropathologica, 2013, 125, 439-57 Sequence family variant loss from the AZFc interval of the human Y chromosome, but not gene copy loss, is strongly associated with male infertility. Journal of Medical Genetics, 2004, 41, 814-25 SHAPE AND TEXTURE INDEXES APPLICATION TO CELL NUCLEI CLASSIFICATION. International Journal of Pattern Recognition and Artificial Intelligence, 2013, 27, 1357002 CAPN3 mutations in patients with idiopathic eosinophilic myositis. Annals of Neurology, 2006, 59, 905-1 UMD-Predictor: A High-Throughput Sequencing Compliant System for Pathogenicity Prediction of any Human CDNA Substitution. Human Mutation, 2016, 37, 439-46 Dysferlin mutations in LGMD2B, Miyoshi myopathy, and atypical dysferlinopathies. Human Mutation, 2005, 26, 165 Fine mapping of de novo CMT1A and HNPP rearrangements within CMT1A-REPS evidences two distinct sex dependent mechanisms and candidate sequences involved in recombination. Human Molecular Genetics, 1998, 7, 141-8 Random walk with restart on multiplex and heterogeneous biological networks. Bioinformatics, 2019, 35, 497-505 Analysis of the DYSF mutational spectrum in a large cohort of patients. Human Mutation, 2009, 30, E345 Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping. Human Mutation, 2010, 31, 136-42 Berlin of body mass index to high on-treatment platelet reactivity and of failed clopidogrel dose adjustment according to platelet reactivity monitoring in patients undergoing percutaneous coronary intervention. American Journal of Cardiology, 2009, 104, 1511-5 Demyelinating X-linked Charcot-Marie-Tooth disease: un	SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. American Journal of Human Genetics, 2012, 90, 689-92 Serotonin transporter (S-HTT) gene polymorphisms are not associated with susceptibility to mood disorders. American Journal of Medical Genetics Part A, 1998, 81, 1-3 VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy. Acta Neuropathologica, 2013, 125, 439-57 Sequence family variant loss from the AZFc interval of the human Y chromosome, but not gene copy loss, is strongly associated with male infertility. Journal of Medical Genetics, 2004, 41, 814-25 SHAPE AND TEXTURE INDEXES APPLICATION TO CELL NUCLEI CLASSIFICATION. International Journal of Pattern Recognition and Artificial Intelligence, 2013, 27, 1357002 CAPN3 mutations in patients with idiopathic eosinophilic myositis. Annals of Neurology, 2006, 59, 905-119-4 UMD-Predictor: A High-Throughput Sequencing Compliant System for Pathogenicity Prediction of any Human cDNA Substitution. Human Mutation, 2016, 37, 439-46 Dysferlin mutations in LGMD2B, Miyoshi myopathy, and atypical dysferlinopathies. Human Mutation 2005, 26, 165 File mapping of de novo CMT1A and HNPP rearrangements within CMT1A-REPs evidences two distinct sex-dependent mechanisms and candidate sequences involved in recombination. Human Molecular Genetics, 1998, 7, 141-8 Random walk with restart on multiplex and heterogeneous biological networks. Bioinformatics, 2019, 35, 497-505 Analysis of the DYSF mutational spectrum in a large cohort of patients. Human Mutation, 2009, 30, E345-25 HGPS and related premature aging disorders: from genomic identification to the first therapeutic approaches. Mechanisms of Ageing and Development, 2008, 129, 449-59 Relation of body mass index to high on-treatment platelet reactivity and of failed clopidogrel dose adjustment according to platelet reactivity monitoring in patients undergoing percutaneous coronary intervention. American Journal of Cardiology, 2009, 104, 1511-5 Development and Va	2007, 6, 139-53 2007, 139-53 2007, 1

208	MG132-induced progerin clearance is mediated by autophagy activation and splicing regulation. <i>EMBO Molecular Medicine</i> , 2017 , 9, 1294-1313	12	63
207	De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development. <i>Nature Genetics</i> , 2017 , 49, 249-255	36.3	60
206	The phenotypic manifestations of autosomal recessive axonal Charcot-Marie-Tooth due to a mutation in Lamin A/C gene. <i>Neuromuscular Disorders</i> , 2003 , 13, 60-7	2.9	60
205	A naturally occurring human minidysferlin protein repairs sarcolemmal lesions in a mouse model of dysferlinopathy. <i>Science Translational Medicine</i> , 2010 , 2, 50ra69	17.5	59
204	The human Y chromosome genes BPY2, CDY1 and DAZ are not essential for sustained fertility. <i>Molecular Human Reproduction</i> , 2000 , 6, 789-93	4.4	59
203	Differential DNA methylation of the D4Z4 repeat in patients with FSHD and asymptomatic carriers. <i>Neurology</i> , 2014 , 83, 733-42	6.5	58
202	Deregulation of the protocadherin gene FAT1 alters muscle shapes: implications for the pathogenesis of facioscapulohumeral dystrophy. <i>PLoS Genetics</i> , 2013 , 9, e1003550	6	58
201	VMA21 deficiency causes an autophagic myopathy by compromising V-ATPase activity and lysosomal acidification. <i>Cell</i> , 2009 , 137, 235-46	56.2	54
200	A conserved splicing mechanism of the LMNA gene controls premature aging. <i>Human Molecular Genetics</i> , 2011 , 20, 4540-55	5.6	54
199	Sex-dependent rearrangements resulting in CMT1A and HNPP. <i>Nature Genetics</i> , 1997 , 17, 136-7	36.3	54
198	PMP22 overexpression causes dysmyelination in mice. <i>Brain</i> , 2002 , 125, 2213-21	11.2	54
197	Clinicopathologic features of histiocytic lesions following ALL, with a review of the literature. <i>Pediatric and Developmental Pathology</i> , 2010 , 13, 225-37	2.2	53
196	Polymorphic Short Tandem Repeats for Diagnosis of the Charcot-Marie-Tooth 1A Duplication. <i>Clinical Chemistry</i> , 2001 , 47, 829-837	5.5	53
195	Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. <i>Seminars in Cell and Developmental Biology</i> , 2014 , 29, 125-47	7.5	52
194	Dysferlinopathies. <i>Neurology India</i> , 2008 , 56, 289-97	0.7	51
193	Lack of correlation between outcomes of membrane repair assay and correction of dystrophic changes in experimental therapeutic strategy in dysferlinopathy. <i>PLoS ONE</i> , 2012 , 7, e38036	3.7	49
192	Loss of Calmodulin- and Radial-Spoke-Associated Complex Protein CFAP251 Leads to Immotile Spermatozoa Lacking Mitochondria and Infertility in Men. <i>American Journal of Human Genetics</i> , 2018 , 103, 413-420	11	47
191	Mutations in PHD-like domain of the ATRX gene correlate with severe psychomotor impairment and severe urogenital abnormalities in patients with ATRX syndrome. <i>Clinical Genetics</i> , 2006 , 70, 57-62	4	45

190	An overview of treatment strategies for Hutchinson-Gilford Progeria syndrome. <i>Nucleus</i> , 2018 , 9, 246-25	53 .9	44
189	PMPCA mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia. <i>Brain</i> , 2015 , 138, 1505-17	11.2	43
188	High prevalence of laminopathies among patients with metabolic syndrome. <i>Human Molecular Genetics</i> , 2011 , 20, 3779-86	5.6	43
187	A novel MYH7 mutation links congenital fiber type disproportion and myosin storage myopathy. <i>Neuromuscular Disorders</i> , 2011 , 21, 254-62	2.9	42
186	Novel mutations in TTC37 associated with tricho-hepato-enteric syndrome. <i>Human Mutation</i> , 2011 , 32, 277-81	4.7	42
185	Molecular dissection of the Schwann cell specific promoter of the PMP22 gene. <i>Gene</i> , 2000 , 248, 223-31	3.8	42
184	Mutations in ACTRT1 and its enhancer RNA elements lead to aberrant activation of Hedgehog signaling in inherited and sporadic basal cell carcinomas. <i>Nature Medicine</i> , 2017 , 23, 1226-1233	50.5	42
183	Mutations in BCAP31 cause a severe X-linked phenotype with deafness, dystonia, and central hypomyelination and disorganize the Golgi apparatus. <i>American Journal of Human Genetics</i> , 2013 , 93, 579-86	11	41
182	Mutation screening of the N-myc downstream-regulated gene 1 (NDRG1) in patients with Charcot-Marie-Tooth Disease. <i>Human Mutation</i> , 2003 , 22, 129-35	4.7	41
181	Induced pluripotent stem cells reveal functional differences between drugs currently investigated in patients with hutchinson-gilford progeria syndrome. <i>Stem Cells Translational Medicine</i> , 2014 , 3, 510-9	6.9	40
180	Prelamin A accumulation in endothelial cells induces premature senescence and functional impairment. <i>Atherosclerosis</i> , 2014 , 237, 45-52	3.1	39
179	Dysregulation of 4q35- and muscle-specific genes in fetuses with a short D4Z4 array linked to facio-scapulo-humeral dystrophy. <i>Human Molecular Genetics</i> , 2013 , 22, 4206-14	5.6	38
178	Linkage of X-linked myopathy with excessive autophagy (XMEA) to Xq28. European Journal of Human Genetics, 2000 , 8, 125-9	5.3	38
177	AP1S2 is mutated in X-linked Dandy-Walker malformation with intellectual disability, basal ganglia disease and seizures (Pettigrew syndrome). <i>European Journal of Human Genetics</i> , 2014 , 22, 363-8	5.3	36
176	New ZMPSTE24 (FACE1) mutations in patients affected with restrictive dermopathy or related progeroid syndromes and mutation update. <i>European Journal of Human Genetics</i> , 2014 , 22, 1002-11	5.3	36
175	Novel frameshifting mutations of the ZMPSTE24 gene in two siblings affected with restrictive dermopathy and review of the mutations described in the literature. <i>American Journal of Medical Genetics, Part A</i> , 2010 , 152A, 447-52	2.5	35
174	Homozygosity mapping of autosomal recessive demyelinating Charcot-Marie-Tooth neuropathy (CMT4H) to a novel locus on chromosome 12p11.21-q13.11. <i>Journal of Medical Genetics</i> , 2005 , 42, 260-5	5.8	35
173	Drug screening on Hutchinson Gilford progeria pluripotent stem cells reveals aminopyrimidines as new modulators of farnesylation. <i>Cell Death and Disease</i> , 2016 , 7, e2105	9.8	34

172	Molecular combing reveals allelic combinations in facioscapulohumeral dystrophy. <i>Annals of Neurology</i> , 2011 , 70, 627-33	9.4	33
171	An association of Hutchinson-Gilford progeria and malignancy. <i>American Journal of Medical Genetics, Part A</i> , 2007 , 143A, 1821-6	2.5	33
170	LMNA mutations in atypical WernerN syndrome. Lancet, The, 2003, 362, 1585-6; author reply 1586	40	33
169	Exome sequencing identifies recurrent alterations and the absence of , and mutations in splenic diffuse red pulp small B-cell lymphoma. <i>Haematologica</i> , 2017 , 102, 1758-1766	6.6	32
168	An inherited LMNA gene mutation in atypical Progeria syndrome. <i>American Journal of Medical Genetics, Part A</i> , 2012 , 158A, 2881-7	2.5	32
167	Type B mandibuloacral dysplasia with congenital myopathy due to homozygous ZMPSTE24 missense mutation. <i>European Journal of Human Genetics</i> , 2011 , 19, 647-54	5.3	32
166	Exome sequencing reveals a de novo POLD1 mutation causing phenotypic variability in mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome (MDPL). <i>Metabolism: Clinical and Experimental</i> , 2017 , 71, 213-225	12.7	31
165	WDR73 Mutations Cause Infantile Neurodegeneration and Variable Glomerular Kidney Disease. <i>Human Mutation</i> , 2015 , 36, 1021-8	4.7	31
164	Homozygous deletion of SUN5 in three men with decapitated spermatozoa. <i>Human Molecular Genetics</i> , 2017 , 26, 3167-3171	5.6	30
163	Metformin decreases progerin expression and alleviates pathological defects of Hutchinson-Gilford progeria syndrome cells. <i>Npj Aging and Mechanisms of Disease</i> , 2016 , 2, 16026	5.5	29
162	Identification of variants in the 4q35 gene FAT1 in patients with a facioscapulohumeral dystrophy-like phenotype. <i>Human Mutation</i> , 2015 , 36, 443-53	4.7	29
161	Translational research and therapeutic perspectives in dysferlinopathies. <i>Molecular Medicine</i> , 2011 , 17, 875-82	6.2	29
160	Characterization of two mutations in the SPTLC1 subunit of serine palmitoyltransferase associated with hereditary sensory and autonomic neuropathy type I. <i>Human Mutation</i> , 2011 , 32, E2211-25	4.7	29
159	Molecular genetics of autosomal-recessive axonal Charcot-Marie-Tooth neuropathies. <i>NeuroMolecular Medicine</i> , 2006 , 8, 87-106	4.6	29
158	The clinical variability of the MECP2 duplication syndrome: description of two families with duplications excluding L1CAM and FLNA. <i>Clinical Genetics</i> , 2009 , 75, 301-3	4	27
157	NDRG1-linked Charcot-Marie-Tooth disease (CMT4D) with central nervous system involvement. <i>Neuromuscular Disorders</i> , 2007 , 17, 163-8	2.9	27
156	Evidence of SARS-CoV-2 re-infection with a different genotype. <i>Journal of Infection</i> , 2021 , 82, 84-123	18.9	27
155	Exome sequencing identifies a novel mutation in PIK3R1 as the cause of SHORT syndrome. <i>BMC Medical Genetics</i> , 2014 , 15, 51	2.1	26

(2015-2009)

154	Novel LMNA mutation in atypical Werner syndrome presenting with ischemic disease. <i>Stroke</i> , 2009 , 40, e11-4	6.7	26
153	UMD-DYSF, a novel locus specific database for the compilation and interactive analysis of mutations in the dysferlin gene. <i>Human Mutation</i> , 2012 , 33, E2317-31	4.7	25
152	HSFY genes and the P4 palindrome in the AZFb interval of the human Y chromosome are not required for spermatocyte maturation. <i>Human Reproduction</i> , 2012 , 27, 615-24	5.7	25
151	Founder effect and estimation of the age of the c.892C>T (p.Arg298Cys) mutation in LMNA associated to Charcot-Marie-Tooth subtype CMT2B1 in families from North Western Africa. <i>Annals of Human Genetics</i> , 2008 , 72, 590-7	2.2	23
150	A Heterozygous ZMPSTE24 Mutation Associated with Severe Metabolic Syndrome, Ectopic Fat Accumulation, and Dilated Cardiomyopathy. <i>Cells</i> , 2016 , 5,	7.9	23
149	Low penetrance in facioscapulohumeral muscular dystrophy type 1 with large pathological D4Z4 alleles: a cross-sectional multicenter study. <i>Orphanet Journal of Rare Diseases</i> , 2015 , 10, 2	4.2	22
148	Muscle Cells Fix Breaches by Orchestrating a Membrane Repair Ballet. <i>Journal of Neuromuscular Diseases</i> , 2018 , 5, 21-28	5	22
147	Exon 32 Skipping of Dysferlin Rescues Membrane Repair in PatientsNCells. <i>Journal of Neuromuscular Diseases</i> , 2015 , 2, 281-290	5	22
146	Molecular combing reveals complex 4q35 rearrangements in Facioscapulohumeral dystrophy. <i>Human Mutation</i> , 2017 , 38, 1432-1441	4.7	22
145	Truncated prelamin A expression in HGPS-like patients: a transcriptional study. <i>European Journal of Human Genetics</i> , 2015 , 23, 1051-61	5.3	21
144	A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem cells. <i>Scientific Reports</i> , 2016 , 6, 347	98 9	21
143	Exome sequencing as a second-tier diagnostic approach for clinically suspected dysferlinopathy patients. <i>Muscle and Nerve</i> , 2014 , 50, 1007-10	3.4	21
142	CAMOS, a nonprogressive, autosomal recessive, congenital cerebellar ataxia, is caused by a mutant zinc-finger protein, ZNF592. <i>European Journal of Human Genetics</i> , 2010 , 18, 1107-13	5.3	21
141	Assignment of a new congenital fibrosis of extraocular muscles type 3 (CFEOM3) locus, FEOM4, based on a balanced translocation t(2;13) (q37.3;q12.11) and identification of candidate genes. Journal of Medical Genetics, 2005, 42, 253-9	5.8	21
140	Numerical aberrations, including trisomy 22 as the sole anomaly, are recurrent in follicular thyroid adenomas. <i>Genes Chromosomes and Cancer</i> , 1993 , 8, 63-6	5	21
139	Antisense-Based Progerin Downregulation in HGPS-Like PatientsNCells. <i>Cells</i> , 2016 , 5,	7.9	21
138	Tricho-Hepato-Enteric Syndrome mutation update: Mutations spectrum of TTC37 and SKIV2L, clinical analysis and future prospects. <i>Human Mutation</i> , 2018 , 39, 774-789	4.7	20
137	Vascular Endothelial Growth Factor A c.*237C>T polymorphism is associated with bevacizumab efficacy and related hypertension in metastatic colorectal cancer. <i>Digestive and Liver Disease</i> , 2015 , 47, 331-7	3.3	20

136	Prelamin A processing and functional effects in restrictive dermopathy. Cell Cycle, 2010, 9, 4766-8	4.7	20
135	Molecular diagnosis of inherited peripheral neuropathies by targeted next-generation sequencing: molecular spectrum delineation. <i>BMJ Open</i> , 2018 , 8, e021632	3	20
134	Neonatal screening for sickle cell disease in France: evaluation of the selective process. <i>Journal of Clinical Pathology</i> , 2010 , 63, 548-51	3.9	19
133	Altered splicing in prelamin A-associated premature aging phenotypes. <i>Progress in Molecular and Subcellular Biology</i> , 2006 , 44, 199-232	3	19
132	Clinical heterogeneity and a high proportion of novel mutations in a Chinese cohort of patients with dysferlinopathy. <i>Neurology India</i> , 2014 , 62, 635-9	0.7	18
131	LBR mutation and nuclear envelope defects in a patient affected with Reynolds syndrome. <i>Journal of Medical Genetics</i> , 2010 , 47, 361-70	5.8	18
130	Transcriptional explorations of CAPN3 identify novel splicing mutations, a large-sized genomic deletion and evidence for messenger RNA decay. <i>Clinical Genetics</i> , 2007 , 72, 582-92	4	18
129	Loss-of-Function Mutations in UNC45A Cause a Syndrome Associating Cholestasis, Diarrhea, Impaired Hearing, and Bone Fragility. <i>American Journal of Human Genetics</i> , 2018 , 102, 364-374	11	17
128	A patient with limb girdle muscular dystrophy carries a TRIM32 deletion, detected by a novel CGH array, in compound heterozygosis with a nonsense mutation. <i>Neuromuscular Disorders</i> , 2013 , 23, 478-82	2.9	17
127	ATRX syndrome in a girl with a heterozygous mutation in the ATRX Zn finger domain and a totally skewed X-inactivation pattern. <i>American Journal of Medical Genetics, Part A</i> , 2006 , 140, 2212-5	2.5	17
126	Screening of the CAPN3 gene in patients with possible LGMD2A. Clinical Genetics, 2006, 69, 444-9	4	17
125	Detection of TRIM32 deletions in LGMD patients analyzed by a combined strategy of CGH array and massively parallel sequencing. <i>European Journal of Human Genetics</i> , 2015 , 23, 929-34	5.3	16
124	Identification of splicing defects caused by mutations in the dysferlin gene. <i>Human Mutation</i> , 2014 , 35, 1532-41	4.7	16
123	Novel mutations in the PRX and the MTMR2 genes are responsible for unusual Charcot-Marie-Tooth disease phenotypes. <i>Neuromuscular Disorders</i> , 2011 , 21, 543-50	2.9	16
122	Tight skin and limited joint movements as early presentation of Hutchinson-Gilford progeria in a 7-week-old infant. <i>European Journal of Pediatrics</i> , 2005 , 164, 283-6	4.1	16
121	Improving molecular diagnosis of distal myopathies by targeted next-generation sequencing. Journal of Neurology, Neurosurgery and Psychiatry, 2016 , 87, 340-2	5.5	15
120	Nuclear envelope remodelling during human spermiogenesis involves somatic B-type lamins and a spermatid-specific B3 lamin isoform. <i>Molecular Human Reproduction</i> , 2015 , 21, 225-36	4.4	15
119	Behavioral and molecular exploration of the AR-CMT2A mouse model Lmna (R298C/R298C). NeuroMolecular Medicine, 2012, 14, 40-52	4.6	15

118	Eosinophilic infiltration related to CAPN3 mutations: a pathophysiological component of primary calpainopathy?. <i>Clinical Genetics</i> , 2011 , 80, 398-402		15
117	Identification of different genomic deletions and one duplication in the dysferlin gene using multiplex ligation-dependent probe amplification and genomic quantitative PCR. <i>Genetic Testing</i> and Molecular Biomarkers, 2009 , 13, 439-42		15
116	Low lamin A expression in lung adenocarcinoma cells from pleural effusions is a pejorative factor associated with high number of metastatic sites and poor Performance status. <i>PLoS ONE</i> , 2017 , 12, e018373	36	15
115	Deciphering the complexity of the 4q and 10q subtelomeres by molecular combing in healthy individuals and patients with facioscapulohumeral dystrophy. <i>Journal of Medical Genetics</i> , 2019 , 56, 590- 601		14
114	Multilineage Differentiation for Formation of Innervated Skeletal Muscle Fibers from Healthy and Diseased Human Pluripotent Stem Cells. <i>Cells</i> , 2020 , 9,		14
113	Clinical and allelic heterogeneity in a pediatric cohort of 11 patients carrying MFN2 mutation. <i>Brain and Development</i> , 2016 , 38, 498-506		14
112	Molecular basis of beta-thalassemia in Morocco: possible origins of the molecular heterogeneity. <i>Genetic Testing and Molecular Biomarkers</i> , 2008 , 12, 563-8		14
111	Tetra-amelia and lung hypo/aplasia syndrome: new case report and review. <i>American Journal of Medical Genetics, Part A</i> , 2008 , 146A, 2799-803		14
110	Respiratory and cardiac function in japanese patients with dysferlinopathy. <i>Muscle and Nerve</i> , 2016 , 53, 394-401		14
109	Novel mutations cause an aggressive atypical neonatal progeria without progerin accumulation. <i>Journal of Medical Genetics</i> , 2016 , 53, 776-785		14
108	A multicenter retrospective study of charcot-marie-tooth disease type 4B (CMT4B) associated with mutations in myotubularin-related proteins (MTMRs). <i>Annals of Neurology</i> , 2019 , 86, 55-67		13
107	Proposition of adjustments to the ACMG-AMP framework for the interpretation of MEN1 missense variants. <i>Human Mutation</i> , 2019 , 40, 661-674		13
106	Two novel missense mutations in FGD4/FRABIN cause Charcot-Marie-Tooth type 4H (CMT4H). Journal of the Peripheral Nervous System, 2012, 17, 141-6		13
105	A whole-genome scan in a large family with leukodystrophy and oligodontia reveals linkage to 10q22. <i>Neurogenetics</i> , 2011 , 12, 73-8		13
104	Beta-thalassemia intermedia due to two novel mutations in the promoter region of the beta-globin gene. <i>European Journal of Haematology</i> , 2008 , 80, 346-50		13
103	Loss of MTX2 causes mandibuloacral dysplasia and links mitochondrial dysfunction to altered nuclear morphology. <i>Nature Communications</i> , 2020 , 11, 4589	1	13
102	Toward an objective measure of functional disability in dysferlinopathy. <i>Muscle and Nerve</i> , 2016 , 53, 49-574		13
101	Correction of pseudoexon splicing caused by a novel intronic dysferlin mutation. <i>Annals of Clinical and Translational Neurology</i> , 2019 , 6, 642-654		12

100	HIV-1 infection and first line ART induced differential responses in mitochondria from blood lymphocytes and monocytes: the ANRS EP45 "Aging" study. <i>PLoS ONE</i> , 2012 , 7, e41129	3.7	12
99	Long-term follow-up study on patients with Miyoshi phenotype of distal muscular dystrophy. <i>European Journal of Neurology</i> , 2013 , 20, 968-74	6	11
98	HIV protease inhibitors do not cause the accumulation of prelamin A in PBMCs from patients receiving first line therapy: the ANRS EP45 "aging" study. <i>PLoS ONE</i> , 2012 , 7, e53035	3.7	11
97	Immunolabelling and flow cytometry as new tools to explore dysferlinopathies. <i>Neuromuscular Disorders</i> , 2010 , 20, 57-60	2.9	11
96	Nuclear localization of a novel human syntaxin 1B isoform. <i>Gene</i> , 2008 , 423, 160-71	3.8	11
95	Prenatal detection of the 17p11.2 duplication in Charcot-Marie-Tooth disease type 1A: necessity of a multidisciplinary approach for heterogeneous disorders. <i>European Journal of Human Genetics</i> , 2002 , 10, 297-302	5.3	11
94	Loss of Cajal bodies in motor neurons from patients with novel mutations in VRK1. <i>Human Molecular Genetics</i> , 2019 , 28, 2378-2394	5.6	10
93	Identification of a ERCC5 c.2333T>C (L778P) Variant in Two Tunisian Siblings With Mild Xeroderma Pigmentosum Phenotype. <i>Frontiers in Genetics</i> , 2019 , 10, 111	4.5	9
92	MicroRNAs in hereditary and sporadic premature aging syndromes and other laminopathies. <i>Aging Cell</i> , 2018 , 17, e12766	9.9	9
91	Segregation between SMCHD1 mutation, D4Z4 hypomethylation and Facio-Scapulo-Humeral Dystrophy: a case report. <i>BMC Medical Genetics</i> , 2016 , 17, 66	2.1	9
90	Novel ALPK3 mutation in a Tunisian patient with pediatric cardiomyopathy and facio-thoraco-skeletal features. <i>Journal of Human Genetics</i> , 2018 , 63, 1077-1082	4.3	9
89	Lamins in Lung Cancer: Biomarkers and Key Factors for Disease Progression through miR-9 Regulation?. <i>Cells</i> , 2018 , 7,	7.9	9
88	A novel mutation in FGD4/FRABIN causes Charcot Marie Tooth disease type 4H in patients from a consanguineous Tunisian family. <i>Annals of Human Genetics</i> , 2013 , 77, 336-43	2.2	9
87	LEM-domain proteins are lost during human spermiogenesis but BAF and BAF-L persist. <i>Reproduction</i> , 2017 , 154, 387-401	3.8	9
86	Mutations in the X-linked form of Charcot-Marie-Tooth disease in the French population. <i>Neurogenetics</i> , 1997 , 1, 117-23	3	9
85	Fine-mapping the gene for X-linked myopathy with excessive autophagy. <i>Neurology</i> , 2008 , 71, 951-3	6.5	9
84	Hutchinson-Gilford progeria syndrome: Rejuvenating old drugs to fight accelerated ageing. <i>Methods</i> , 2021 , 190, 3-12	4.6	9
83	Clinical massively parallel sequencing for the diagnosis of myopathies. <i>Revue Neurologique</i> , 2015 , 171, 558-71	3	8

(2015-2016)

82	A novel overlapping phenotype characterized by lipodystrophy, mandibular dysplasia, and dilated cardiomyopathy associated with a new mutation in the LMNA gene. <i>International Journal of Cardiology</i> , 2016 , 209, 317-8	3.2	8	
81	Validation of comparative genomic hybridization arrays for the detection of genomic rearrangements of the calpain-3 and dysferlin genes. <i>Clinical Genetics</i> , 2012 , 81, 99-101	4	8	
8o	New multiplex PCR-based protocol allowing indirect diagnosis of FSHD on single cells: can PGD be offered despite high risk of recombination?. <i>European Journal of Human Genetics</i> , 2010 , 18, 533-8	5.3	8	
79	Allelic variations at the haploid TBX1 locus do not influence the cardiac phenotype in cases of 22q11 microdeletion. <i>Annales De GBBique</i> , 2004 , 47, 235-40		8	
78	Defective prelamin A processing resulting from LMNA or ZMPSTE24 mutations as the cause of restrictive dermopathy. <i>Archives of Dermatology</i> , 2005 , 141, 1473-4; author reply 1474		8	
77	Isolation of cosmids and fetal brain cDNAs from the proximal long arm of human chromosome 22. <i>Human Molecular Genetics</i> , 1993 , 2, 535-40	5.6	8	
76	Molecular Genetics of Autosomal-Recessive Axonal Charcot-Marie-Tooth Neuropathies. NeuroMolecular Medicine,8, 87-106	4.6	8	
75	Dysferlinopathy in Iran: Clinical and genetic report. <i>Journal of the Neurological Sciences</i> , 2015 , 359, 256	-93.2	7	
74	Therapeutic exon Nawitching Nfor dysferlinopathies?. European Journal of Human Genetics, 2010, 18, 969-70; author reply 971	5.3	7	
73	Exclusion of mutations in the dysferlin alternative exons 1 of DYSF-v1, 5a, and 40a in a cohort of 26 patients. <i>Genetic Testing and Molecular Biomarkers</i> , 2010 , 14, 153-4	1.6	7	
72	Vulnerability of progeroid smooth muscle cells to biomechanical forces is mediated by MMP13. <i>Nature Communications</i> , 2020 , 11, 4110	17.4	7	
71	Genetic Characterization of a French Cohort of GNE-mutation negative inclusion body myopathy patients with exome sequencing. <i>Muscle and Nerve</i> , 2017 , 56, 993-997	3.4	6	
70	Whole Exome Sequencing Reveals a Large Genetic Heterogeneity and Revisits the Causes of Hypertrophic Cardiomyopathy. <i>Circulation Genomic and Precision Medicine</i> , 2019 , 12, e002500	5.2	6	
69	Unraveling Mutations in Metabolic Syndrome: Cellular Phenotype and Clinical Pitfalls. <i>Cells</i> , 2020 , 9,	7.9	6	
68	Novel CAPN3 variant associated with an autosomal dominant calpainopathy. <i>Neuropathology and Applied Neurobiology</i> , 2020 , 46, 564-578	5.2	6	
67	Substrate Topography Modulates Cell Aging on a Progeria Cell Model. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 1498-1504	5.5	6	
66	Abnormal retention of nuclear lamina and disorganization of chromatin-related proteins in spermatozoa from DPY19L2-deleted globozoospermic patients. <i>Reproductive BioMedicine Online</i> , 2017 , 35, 562-570	4	6	
65	Novel Pathogenic Variants in a French Cohort Widen the Mutational Spectrum of GNE Myopathy. Journal of Neuromuscular Diseases, 2015 , 2, 131-136	5	6	

64	Novel ancestral Dysferlin splicing mutation which migrated from the Iberian peninsula to South America. <i>Neuromuscular Disorders</i> , 2011 , 21, 328-37	2.9	6
63	Restrictive dermopathy in a Turkish newborn. <i>Pediatric Dermatology</i> , 2011 , 28, 408-11	1.9	6
62	Tetra-amelia and lung aplasia syndrome: report of a new family and exclusion of candidate genes. <i>Clinical Genetics</i> , 2005 , 68, 558-60	4	6
61	Prenatal detection of a 17p11.2 duplication resulting from a rare recombination event and novel PCR-based strategy for molecular identification of Charcot-Marie-Tooth disease type 1A. <i>European Journal of Human Genetics</i> , 2000 , 8, 229-35	5.3	6
60	The ubiquitin-activating enzyme E1 homologous genes on the mouse Y chromosome (Ube1y) represent one functional gene and six partial pseudogenes. <i>Mammalian Genome</i> , 2000 , 11, 164-8	3.2	6
59	Identification and sequencing the juvenile spermatogonial depletion critical interval on mouse chromosome 1 reveals the presence of eight candidate genes. <i>Biochemical and Biophysical Research Communications</i> , 2001 , 288, 1129-35	3.4	6
58	Twenty-two year follow-up of an Indian family with dysferlinopathy-clinical, immunocytochemical, western blotting and genetic features. <i>Neurology India</i> , 2008 , 56, 388-90	0.7	6
57	The French National Registry of patients with Facioscapulohumeral muscular dystrophy. <i>Orphanet Journal of Rare Diseases</i> , 2018 , 13, 218	4.2	6
56	A new lamin a mutation associated with acrogeria syndrome. <i>Journal of Investigative Dermatology</i> , 2014 , 134, 2274-2277	4.3	5
55	Entire CAPN3 gene deletion in a patient with limb-girdle muscular dystrophy type 2A. <i>Muscle and Nerve</i> , 2014 , 50, 448-53	3.4	5
54	A 10 Mb duplication in chromosome band 5q31.3-5q33.1 associated with late-onset lipodystrophy, ichthyosis, epilepsy and glomerulonephritis. <i>European Journal of Medical Genetics</i> , 2011 , 54, 310-3	2.6	5
53	Analytical evaluation of the Tosoh HLC-723 G8 automated HPLC analyzer for hemoglobin analysis in beta-thalassemia mode. <i>Clinical Biochemistry</i> , 2011 , 44, 441-3	3.5	5
52	Polymorphisms of the lamina maturation pathway and their association with the metabolic syndrome: the DESIR prospective study. <i>Journal of Molecular Medicine</i> , 2010 , 88, 193-201	5.5	5
51	Diagnostic strategy for limb-girdle muscular dystrophies. <i>Revue Neurologique</i> , 2012 , 168, 919-26	3	4
50	Dysferlinopathy in Chile: evidence of two novel mutations in the first reported cases. <i>Genetic Testing and Molecular Biomarkers</i> , 2009 , 13, 105-8	1.6	4
49	Additional familial case of subtotal leukonychia and sebaceous cysts (Bauer syndrome): belong the nervous tumours to the phenotype?. <i>European Journal of Medical Genetics</i> , 2008 , 51, 436-43	2.6	4
48	Performance of semiconductor sequencing platform for non-invasive prenatal genetic screening for fetal aneuploidy: results from a multicenter prospective cohort study in a clinical setting. <i>Ultrasound in Obstetrics and Gynecology</i> , 2019 , 54, 246-254	5.8	4
47	Multiallelic rare variants support an oligogenic origin of sudden cardiac death in the young. <i>Herz</i> , 2021 , 46, 94-102	2.6	4

(2015-2019)

46	A severe clinical phenotype of Noonan syndrome with neonatal hypertrophic cardiomyopathy in the second case worldwide with RAF1 S259Y neomutation. <i>Genetical Research</i> , 2019 , 101, e6	1.1	3
45	Identification of a CDH12 potential candidate genetic variant for an autosomal dominant form of transgrediens and progrediens palmoplantar keratoderma in a Tunisian family. <i>Journal of Human Genetics</i> , 2020 , 65, 397-410	4.3	3
44	The involvement of the nuclear lamina in human and rodent spermiogenesis: a systematic review. <i>Basic and Clinical Andrology</i> , 2018 , 28, 7	2.8	3
43	A collodion baby with facial dysmorphism, limb anomalies, pachygyria and genital hypoplasia: a mild form of Neu-laxova syndrome or a new entity?. <i>Annals of Dermatology</i> , 2013 , 25, 483-8	0.4	3
42	The rare codon 24 (T>A) (beta+) mutation in association with the common codon 39 (C> T) (beta0) mutation causes transfusion-dependent beta-thalassemia in a Moroccan patient. <i>Hemoglobin</i> , 2009 , 33, 150-4	0.6	3
41	Splicing impact of deep exonic missense variants in CAPN3 explored systematically by minigene functional assay. <i>Human Mutation</i> , 2020 , 41, 1797-1810	4.7	3
40	Coverage Analysis of Lists of Genes involved in Heterogeneous Genetic Diseases following Benchtop Exome Sequencing using the Ion Proton. <i>Journal of Genetics</i> , 2016 , 95, 203-8	1.2	3
39	Dysferlin Exon 32 Skipping in Patient Cells. <i>Methods in Molecular Biology</i> , 2018 , 1828, 489-496	1.4	3
38	Molecular combing: A new tool in diagnosing leukemia. Cancer Biomarkers, 2016, 17, 405-409	3.8	2
37	Extension of the phenotypic spectrum of GLE1-related disorders to a mild congenital form resembling congenital myopathy. <i>Molecular Genetics & Enomic Medicine</i> , 2020 , 8, e1277	2.3	2
36	Type 1 FSHD with 6-10 Repeated Units: Factors Underlying Severity in Index Cases and Disease Penetrance in Their Relatives Attention. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	2
35	Inflammatory facioscapulohumeral muscular dystrophy type 2 in 18p deletion syndrome. <i>American Journal of Medical Genetics, Part A</i> , 2018 , 176, 1760-1763	2.5	2
34	Pathological modelling of pigmentation disorders associated with Hutchinson-Gilford Progeria Syndrome (HGPS) revealed an impaired melanogenesis pathway in iPS-derived melanocytes. <i>Scientific Reports</i> , 2018 , 8, 9112	4.9	2
33	Comment on: A novel dysferlin-mutant pseudoexon bypassed with antisense oligonucleotides. <i>Annals of Clinical and Translational Neurology</i> , 2015 , 2, 783-4	5.3	2
32	Further heterogeneity in myopathy with tubular aggregates?. Muscle and Nerve, 2012, 46, 984-5	3.4	2
31	Dystrophies musculaires des ceintures : stratgie diagnostique, bases moldulaires. <i>Revue Du Rhumatisme (Edition Francaise)</i> , 2008 , 75, 142-150	0.1	2
30	Physical and genetic linkage of glutaminase (Gls), signal transducer and activator of transcription 1 (Stat1), and xeroderma pigmentosum complementation group G (Xpg) on mouse proximal chromosome 1. <i>Genomics</i> , 1998 , 54, 355-6	4.3	2
29	Organism Models: Choosing the Right Model. <i>Neuromethods</i> , 2015 , 3-27	0.4	2

28	Autosomal dominant segregation of CAPN3 c.598_612del15 associated with a mild form of calpainopathy. <i>Annals of Clinical and Translational Neurology</i> , 2020 , 7, 2538-2540	5.3	2
27	Retrospective analysis and reclassification of DYSF variants in a large French series of dysferlinopathy patients. <i>Genetics in Medicine</i> , 2021 , 23, 1574-1577	8.1	2
26	Clinical profile of comorbidity of rare diseases in a Tunisian patient: a case report associating incontinentia pigmenti and Noonan syndrome. <i>BMC Pediatrics</i> , 2018 , 18, 286	2.6	2
25	Mutations in the mouse Lmna gene causing progeria, muscular dystrophy and cardiomyopathy. <i>Novartis Foundation Symposium</i> , 2005 , 264, 246-58; discussion 258-63		2
24	Ambiguous genitalia, microcephaly, seizures, bone malformations, and early death: a distinct MCA/MR syndrome. <i>American Journal of Medical Genetics, Part A</i> , 2011 , 155A, 1147-51	2.5	1
23	LMNA, ZMPSTE24, and LBR are not mutated in scleroderma. <i>Genetic Testing and Molecular Biomarkers</i> , 2009 , 13, 635-9	1.6	1
22	Late diagnosis of an unstable hemoglobin in a diabetic patient: Hb Baille alpha2 122(H5)His>Tyr. <i>Clinica Chimica Acta</i> , 2009 , 406, 174-5	6.2	1
21	Exclusion of EGFR, HRAS, DSP, JUP, CTNNB1, PLEC1, and EPPK1 as functional candidate genes in 7 families with syndromic diarrhoea. <i>Journal of Pediatric Gastroenterology and Nutrition</i> , 2009 , 48, 501-3	2.8	1
20	Mutations in the Mouse LMNA Gene Causing Progeria, Muscular Dystrophy and Cardiomyopathy. <i>Novartis Foundation Symposium</i> , 2008 , 246-263		1
19	First case of gamma-thalassemia in association with a betaS allele: a pitfall in the neonatal screening for sickle cell disease. <i>Haematologica</i> , 2008 , 93, 1754-5	6.6	1
18	miR-376a-3p and miR-376b-3p overexpression in Hutchinson-Gilford progeria fibroblasts inhibits cell proliferation and induces premature senescence <i>IScience</i> , 2022 , 25, 103757	6.1	1
17	The Dysferlin Transcript Containing the Alternative Exon 40a is Essential for Myocyte Functions. <i>Frontiers in Cell and Developmental Biology</i> , 2021 , 9, 754555	5.7	1
16	A novel bi-allelic loss-of-function mutation in STIM1 expands the phenotype of STIM1-related diseases. <i>Clinical Genetics</i> , 2021 , 100, 84-89	4	1
15	Case Report: Identification of Novel Variants in and Genes in Two Tunisian Patients With Atypical Xeroderma Pigmentosum Phenotype. <i>Frontiers in Genetics</i> , 2021 , 12, 650639	4.5	1
14	Genotype-phenotype correlation in French patients with myelin protein zero gene-related inherited neuropathy. <i>European Journal of Neurology</i> , 2021 , 28, 2913-2921	6	1
13	Outcomes of 4 years of molecular genetic diagnosis on a panel of genes involved in premature aging syndromes, including laminopathies and related disorders. <i>Orphanet Journal of Rare Diseases</i> , 2019 , 14, 288	4.2	1
12	Refining NGS diagnosis of muscular disorders. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2021 , 92, 223-225	5.5	1
11	The lncRNA 44s2 Study Applicability to the Design of 45-55 Exon Skipping Therapeutic Strategy for DMD. <i>Biomedicines</i> , 2021 , 9,	4.8	1

LIST OF PUBLICATIONS

10	High prevalence of mutations in perilipin 1 in patients with precocious acute coronary syndrome. <i>Atherosclerosis</i> , 2020 , 293, 86-91	3.1	О	
9	Gene Mutations in North African Fanconi Anemia Patients. <i>Frontiers in Genetics</i> , 2021 , 12, 610050	4.5	O	
8	Novel partial loss-of-function variants in the tyrosyl-tRNA synthetase 1 (YARS1) gene involved in multisystem disease. <i>European Journal of Medical Genetics</i> , 2021 , 64, 104294	2.6	0	
7	Convergence of patient- and physician-reported outcomes in the French National Registry of Facioscapulohumeral Dystrophy <i>Orphanet Journal of Rare Diseases</i> , 2022 , 17, 96	4.2	O	
6	A polymorphic microsatellite XNP-GT in the XNP/ATRX geneN promotor allows familial indirect diagnosis. <i>Human Mutation</i> , 1999 , 14, 448	4.7		
5	Formes autosomales rilessives de la maladie de Charcot-Marie-Tooth. <i>Bulletin De Ll</i> Academie Nationale De Medecine, 2005 , 189, 55-69	0.1		
4	Dysferlinopathy in Chile: Evidence of Two Novel Mutations in the First Reported Cases. <i>Genetic Testing and Molecular Biomarkers</i> , 2009 , 090108090224061			
3	Commentary: Long-Term Exercise Reduces Formation of Tubular Aggregates and Promotes Maintenance of Ca Entry Units in Aged Muscle. <i>Frontiers in Physiology</i> , 2021 , 12, 663677	4.6		
2	A new tool CovReport generates easy-to-understand sequencing coverage summary for diagnostic reports. <i>Scientific Reports</i> , 2020 , 10, 6247	4.9		
1	The Brain Connectome after Gamma Knife Radiosurgery of the Ventro-Intermediate Nucleus for Tremor: Marseille-Lausanne Radiobiology Study Protocol. <i>Stereotactic and Functional Neurosurgery</i> , 2021 , 99, 387-392	1.6		