Koorosh Shahpasand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8211730/publications.pdf

Version: 2024-02-01

38 papers 1,080 citations

16 h-index 414303 32 g-index

40 all docs

40 docs citations

times ranked

40

1656 citing authors

#	Article	IF	CITATIONS
1	Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature, 2015, 523, 431-436.	13.7	374
2	Pin1 cysteine-113 oxidation inhibits its catalytic activity and cellular function in Alzheimer's disease. Neurobiology of Disease, 2015, 76, 13-23.	2.1	91
3	Stem cell therapy in Alzheimer's disease: possible benefits and limiting drawbacks. Molecular Biology Reports, 2019, 46, 1425-1446.	1.0	51
4	Albumin binding and anticancer effect of magnesium oxide nanoparticles. International Journal of Nanomedicine, 2019, Volume 14, 257-270.	3.3	49
5	<p>Cerium oxide NPs mitigate the amyloid formation of $\hat{l}\pm$ -synuclein and associated cytotoxicity</p>. International Journal of Nanomedicine, 2019, Volume 14, 6989-7000.	3.3	44
6	Extracellular vesicles derived from human ES-MSCs protect retinal ganglion cells and preserve retinal function in a rodent model of optic nerve injury. Stem Cell Research and Therapy, 2020, 11, 203.	2.4	42
7	<p>α-synuclein interaction with zero-valent iron nanoparticles accelerates structural rearrangement into amyloid-susceptible structure with increased cytotoxic tendency</p> . International Journal of Nanomedicine, 2019, Volume 14, 4637-4648.	3.3	33
8	Aluminium oxide nanoparticles induce structural changes in tau and cytotoxicity of the neuroblastoma cell line. International Journal of Biological Macromolecules, 2018, 120, 1140-1148.	3.6	24
9	<p>Exploring the Interaction of Cobalt Oxide Nanoparticles with Albumin, Leukemia Cancer Cells and Pathogenic Bacterial by Multispectroscopic, Docking, Cellular and Antibacterial Approaches</p> . International Journal of Nanomedicine, 2020, Volume 15, 4607-4623.	3.3	24
10	<p>Amorphous aggregation of tau in the presence of titanium dioxide nanoparticles: biophysical, computational, and cellular studies</p> . International Journal of Nanomedicine, 2019, Volume 14, 901-911.	3.3	22
11	Molecular interaction of fibrinogen with zeolite nanoparticles. Scientific Reports, 2019, 9, 1558.	1.6	21
12	<i>ci>cis</i> pT231-Tau Drives Neurodegeneration in Bipolar Disorder. ACS Chemical Neuroscience, 2019, 10, 1214-1221.	1.7	19
13	A Possible Neurodegeneration Mechanism Triggered by Diabetes. Trends in Endocrinology and Metabolism, 2019, 30, 692-700.	3.1	18
14	Silymarin-albumin nanoplex: Preparation and its potential application as an antioxidant in nervous system in vitro and in vivo. International Journal of Pharmaceutics, 2019, 572, 118824.	2.6	18
15	Silica nanoparticles induce conformational changes of tau protein and oxidative stress and apoptosis in neuroblastoma cell line. International Journal of Biological Macromolecules, 2019, 124, 1312-1320.	3.6	17
16	Dopamine-loaded poly (butyl cyanoacrylate) nanoparticles reverse behavioral deficits in Parkinson's animal models. Therapeutic Delivery, 2020, 11, 387-399.	1.2	17
17	Distinct phosphorylation profiles of tau in brains of patients with different tauopathies. Neurobiology of Aging, 2021, 108, 72-79.	1.5	17
18	The effects of nickel oxide nanoparticles on tau protein and neuron-like cells: Biothermodynamics and molecular studies. International Journal of Biological Macromolecules, 2019, 127, 330-339.	3.6	16

#	Article	IF	CITATIONS
19	Key Genes and Biochemical Networks in Various Brain Regions Affected in Alzheimer's Disease. Cells, 2022, 11, 987.	1.8	16
20	"Tau immunotherapy: Hopes and hindrances― Human Vaccines and Immunotherapeutics, 2018, 14, 277-284.	1.4	15
21	Biophysical, molecular dynamics and cellular studies on the interaction of nickel oxide nanoparticles with tau proteins and neuron-like cells. International Journal of Biological Macromolecules, 2019, 125, 778-784.	3.6	15
22	αâ€synuclein abnormalities trigger focal tau pathology, spreading to various brain areas in Parkinson disease. Journal of Neurochemistry, 2021, 157, 727-751.	2.1	13
23	Tau folding and cytotoxicity of neuroblastoma cells in the presence of manganese oxide nanoparticles: Biophysical, molecular dynamics, cellular, and molecular studies. International Journal of Biological Macromolecules, 2019, 125, 674-682.	3.6	12
24	The Interplay of Tau Protein and \hat{l}^2 -Amyloid: While Tauopathy Spreads More Profoundly Than Amyloidopathy, Both Processes Are Almost Equally Pathogenic. Cellular and Molecular Neurobiology, 2021, 41, 1339-1354.	1.7	12
25	Wnt signalling pathway and tau phosphorylation: A comprehensive study on known connections. Cell Biochemistry and Function, 2020, 38, 686-694.	1.4	12
26	Pathogenic <i>cis</i> p-tau levels in CSF reflects severity of traumatic brain injury. Neurological Research, 2022, 44, 496-502.	0.6	12
27	Transplantation of Human Chorion-Derived Cholinergic Progenitor Cells: a Novel Treatment for Neurological Disorders. Molecular Neurobiology, 2019, 56, 307-318.	1.9	10
28	Tau Pathology Triggered by Spinal Cord Injury Can Play a Critical Role in the Neurotrauma Development. Molecular Neurobiology, 2020, 57, 4845-4855.	1.9	10
29	Pathogenic Tau Protein Species: Promising Therapeutic Targets for Ocular Neurodegenerative Diseases. Journal of Ophthalmic and Vision Research, 2019, 14, 491-505.	0.7	10
30	Biothermodynamic, antiproliferative and antimicrobial properties of synthesized copper oxide nanoparticles. Journal of Molecular Liquids, 2021, 324, 114693.	2.3	9
31	Hydrothermal method-based synthesized tin oxide nanoparticles: Albumin binding and antiproliferative activity against K562 cells. Materials Science and Engineering C, 2021, 119, 111649.	3.8	9
32	COVID-19 Vaccination Willingness and Acceptability in Multiple Sclerosis Patients: A Cross Sectional Study in Iran. Vaccines, 2022, 10, 135.	2.1	9
33	<p>The interaction of silica nanoparticles with catalase and human mesenchymal stem cells: biophysical, theoretical and cellular studies</p> . International Journal of Nanomedicine, 2019, Volume 14, 5355-5368.	3.3	6
34	Fabrication of inorganic alumina particles at nanoscale by a pulsed laser ablation technique in liquid and exploring their protein binding, anticancer and antipathogenic activities. Arabian Journal of Chemistry, 2021, 14, 102923.	2.3	5
35	Tau nuclear translocation is a leading step in tau pathology process through P53 stabilization and nucleolar dispersion. Journal of Neuroscience Research, 2022, 100, 1084-1104.	1.3	4
36	Spinal Cord Injury Causes Prominent Tau Pathology Associated with Brain Post-Injury Sequela. Molecular Neurobiology, 2022, 59, 4197-4208.	1.9	2

3

#	Article	lF	CITATIONS
37	P38 initiates degeneration of midbrain GABAergic and glutamatergic neurons in diabetes models. European Journal of Neuroscience, 2022, 56, 3755-3778.	1.2	1
38	Association of Saitohin gene rs62063857 polymorphism with dry type age-related macular degeneration. Ophthalmic Genetics, 2020, 41, 505-506.	0.5	0