Xu Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8211548/publications.pdf

Version: 2024-02-01

116	6,903	46	78
papers	citations	h-index	g-index
116	116	116	6855
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Gold-Trisoctahedra-Coated Capillary-Based SERS Platform for Microsampling and Sensitive Detection of Trace Fentanyl. Analytical Chemistry, 2022, 94, 4850-4858.	3.2	23
2	Ratiometric fluorescent hydrogel for point-of-care monitoring of organophosphorus pesticide degradation. Journal of Hazardous Materials, 2022, 432, 128660.	6.5	20
3	Self-assembled multiprotein nanostructures with enhanced stability and signal amplification capability for sensitive fluorogenic immunoassays. Biosensors and Bioelectronics, 2022, 206, 114132.	5.3	6
4	Bioinspired laccase-mimicking catalyst for on-site monitoring of thiram in paper-based colorimetric platform. Biosensors and Bioelectronics, 2022, 207, 114199.	5.3	18
5	Photonic Crystal Effects on Upconversion Enhancement of LiErF ₄ for Noncontact Cholesterol Detection. ACS Applied Materials & Detection. ACS Applied Materials & Detection.	4.0	8
6	Embedding Proteins within Spatially Controlled Hierarchical Nanoarchitectures for Ultrasensitive Immunoassay. Analytical Chemistry, 2022, 94, 6271-6280.	3.2	6
7	All-Nanofiber Network Structure for Ultrasensitive Piezoresistive Pressure Sensors. ACS Applied Materials & Discrete Sensors. ACS Applied Materials & Discre	4.0	35
8	Ti ₃ C ₂ MXene Nanosheets Functionalized with NaErF ₄ :0.5%Tm@NaLuF ₄ Nanoparticles for Dual-Modal Near-Infrared Ilb/Magnetic Resonance Imaging-Guided Tumor Hyperthermia. ACS Applied Nano Materials, 2022, 5, 8142-8153.	2.4	15
9	Molecular Conformation Engineering To Achieve Longer and Brighter Deep Red/Near-Infrared Emission in Crystalline State. Journal of Physical Chemistry Letters, 2022, 13, 4754-4761.	2.1	9
10	Metal–Organic Frameworks Nanoarchitectures Boost Catalytic Activity for the Construction of Sensitive Immunosensor. Advanced Functional Materials, 2022, 32, .	7.8	13
11	Construction of multienzyme-hydrogel sensor with smartphone detector for on-site monitoring of organophosphorus pesticide. Sensors and Actuators B: Chemical, 2021, 327, 128922.	4.0	41
12	Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. TrAC - Trends in Analytical Chemistry, 2021, 134, 116126.	5.8	121
13	Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sensors and Actuators B: Chemical, 2021, 326, 128828.	4.0	199
14	Stimulated Emission Depletion (STED) Super-Resolution Imaging with an Advanced Organic Fluorescent Probe: Visualizing the Cellular Lipid Droplets at the Unprecedented Nanoscale Resolution., 2021, 3, 516-524.		22
15	MOF-Derived Mesoporous and Hierarchical Hollow-Structured In ₂ O ₃ -NiO Composites for Enhanced Triethylamine Sensing. ACS Sensors, 2021, 6, 3451-3461.	4.0	72
16	Background-free sensing platform for on-site detection of carbamate pesticide through upconversion nanoparticles-based hydrogel suit. Biosensors and Bioelectronics, 2021, 194, 113598.	5.3	40
17	Er ³⁺ self-sensitized nanoprobes with enhanced 1525 nm downshifting emission for NIR-IIb <i>iin vivo</i> bio-imaging. Journal of Materials Chemistry B, 2021, 9, 2899-2908.	2.9	32
18	STED Nanoscopy Imaging of Cellular Lipid Droplets Employing a Superior Organic Fluorescent Probe. Analytical Chemistry, 2021, 93, 14784-14791.	3.2	23

#	Article	IF	Citations
19	Room-Temperature Mixed-Potential Type ppb-Level NO Sensors Based on K ₂ Fe ₄ O ₇ Electrolyte and Ni/Fe–MOF Sensing Electrodes. ACS Sensors, 2021, 6, 4435-4442.	4.0	16
20	YSZ-based solid electrolyte type sensor utilizing ZnMoO4 sensing electrode for fast detection of ppb-level H2S. Sensors and Actuators B: Chemical, 2020, 302, 127205.	4.0	23
21	Mixed potential gas phase sensor using YSZ solid electrolyte and spinel-type oxides AMn2O4(A = Co, Zn) Tj	ЕТО 110	0.784314 rg 22
22	Ni-based tantalate sensing electrode for fast and low detection limit of acetone sensor combining stabilized zirconia. Sensors and Actuators B: Chemical, 2020, 304, 127375.	4.0	15
23	Compact and planar type rapid response ppb-level SO2 sensor based on stabilized zirconia and SrMoO4 sensing electrode. Sensors and Actuators B: Chemical, 2020, 307, 127655.	4.0	16
24	Recent advances in carbon dots for bioimaging applications. Nanoscale Horizons, 2020, 5, 218-234.	4.1	192
25	UV-activated ultrasensitive and fast reversible ppb NO2 sensing based on ZnO nanorod modified by constructing interfacial electric field with In2O3 nanoparticles. Sensors and Actuators B: Chemical, 2020, 305, 127498.	4.0	70
26	Lab in hydrogel portable kit: On-site monitoring of oxalate. Biosensors and Bioelectronics, 2020, 167, 112457.	5.3	26
27	The DNA controllable peroxidase mimetic activity of MoS ₂ nanosheets for constructing a robust colorimetric biosensor. Nanoscale, 2020, 12, 19420-19428.	2.8	52
28	Smartphone-Assisted Robust Sensing Platform for On-Site Quantitation of 2,4-Dichlorophenoxyacetic Acid Using Red Emissive Carbon Dots. Analytical Chemistry, 2020, 92, 12716-12724.	3.2	58
29	Stabilized zirconia-based solid state electrochemical gas sensor coupled with CdTiO3 for acetylene detection. Sensors and Actuators B: Chemical, 2020, 316, 128199.	4.0	13
30	High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers. Sensors and Actuators B: Chemical, 2020, 320, 128292.	4.0	124
31	Design of Red Emissive Carbon Dots: Robust Performance for Analytical Applications in Pesticide Monitoring. Analytical Chemistry, 2020, 92, 3198-3205.	3.2	129
32	Amperometric H2S sensor based on a Pt-Ni alloy electrode and a proton conducting membrane. Sensors and Actuators B: Chemical, 2020, 311, 127900.	4.0	13
33	Nafion-based methanol gas sensor for fuel cell vehicles. Sensors and Actuators B: Chemical, 2020, 311, 127905.	4.0	19
34	Interface interaction of MoS2 nanosheets with DNA based aptameric biosensor for carbohydrate antigen 15–3 detection. Microchemical Journal, 2020, 155, 104675.	2.3	38
35	Xylene gas sensing properties of hydrothermal synthesized SnO2-Co3O4 microstructure. Sensors and Actuators B: Chemical, 2020, 310, 127780.	4.0	66
36	Dual-Signal Readout By Hybrid Nanoflowers for Point-of-Care Ultrasensitive Detection of Organophosphorus Pesticide. ECS Meeting Abstracts, 2020, MA2020-01, 2021-2021.	0.0	1

#	Article	IF	Citations
37	Room temperature gas sensor based on tin dioxide@ polyaniline nanocomposite assembled on flexible substrate: ppb-level detection of NH3. Sensors and Actuators B: Chemical, 2019, 299, 126970.	4.0	7 5
38	Design of highly sensitive and selective xylene gas sensor based on Ni-doped MoO3 nano-pompon. Sensors and Actuators B: Chemical, 2019, 299, 126888.	4.0	71
39	Giant Proteinosomes As Scaffolds for Light Harvesting. ACS Macro Letters, 2019, 8, 1128-1132.	2.3	14
40	Integrating Target-Responsive Hydrogels with Smartphone for On-Site ppb-Level Quantitation of Organophosphate Pesticides. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27605-27614.	4.0	77
41	Tandem catalysis driven by enzymes directed hybrid nanoflowers for on-site ultrasensitive detection of organophosphorus pesticide. Biosensors and Bioelectronics, 2019, 141, 111473.	5.3	72
42	Fluorescent hydrogel test kit coordination with smartphone: Robust performance for on-site dimethoate analysis. Biosensors and Bioelectronics, 2019, 145, 111706.	5. 3	35
43	Au ₃₉ Rh ₆₁ Alloy Nanocrystal-Decorated W ₁₈ O ₄₉ for Enhanced Detection of <i>n</i> -Butanol. ACS Sensors, 2019, 4, 2662-2670.	4.0	47
44	Fuel cell type H2S sensor utilizing Pt-Sn-C/Nafion sensing electrode. Sensors and Actuators B: Chemical, 2019, 299, 126972.	4.0	10
45	Sensitive colorimetric sensor for point-of-care detection of acetylcholinesterase using cobalt oxyhydroxide nanoflakes. Journal of Materials Chemistry B, 2019, 7, 1230-1237.	2.9	50
46	A rapid-response room-temperature planar type gas sensor based on DPA-Ph-DBPzDCN for the sensitive detection of NH ₃ . Journal of Materials Chemistry A, 2019, 7, 4744-4750.	5.2	37
47	Fabrication of highly sensitive and selective room-temperature nitrogen dioxide sensors based on the ZnO nanoflowers. Sensors and Actuators B: Chemical, 2019, 287, 191-198.	4.0	88
48	Mixed potential type acetone sensor based on Ce0.8Gd0.2O1.95 and Bi0.5La0.5FeO3 sensing electrode used for the detection of diabetic ketosis. Sensors and Actuators B: Chemical, 2019, 296, 126688.	4.0	12
49	On-site monitoring of thiram via aggregation-induced emission enhancement of gold nanoclusters based on electronic-eye platform. Sensors and Actuators B: Chemical, 2019, 296, 126641.	4.0	46
50	Solid state electrolyte type gas sensor using stabilized zirconia and MTiO3 (M: Zn, Co and Ni)-SE for detection of low concentration of SO2. Sensors and Actuators B: Chemical, 2019, 296, 126644.	4.0	27
51	Improvement of Gas and Humidity Sensing Properties of Organ-like MXene by Alkaline Treatment. ACS Sensors, 2019, 4, 1261-1269.	4.0	232
52	Design and preparation of the WO3 hollow spheres@ PANI conducting films for room temperature flexible NH3 sensing device. Sensors and Actuators B: Chemical, 2019, 289, 252-259.	4.0	87
53	Interfacial Assembly of Signal Amplified Multienzymes and Biorecognized Antibody into Proteinosome for an Ultrasensitive Immunoassay. Small, 2019, 15, e1900350.	5.2	32
54	Protein–Inorganic Hybrid Nanoflower-Rooted Agarose Hydrogel Platform for Point-of-Care Detection of Acetylcholine. ACS Applied Materials & Samp; Interfaces, 2019, 11, 11857-11864.	4.0	53

#	Article	IF	CITATIONS
55	Fluorometric and colorimetric analysis of carbamate pesticide via enzyme-triggered decomposition of Gold nanoclusters-anchored MnO2 nanocomposite. Sensors and Actuators B: Chemical, 2019, 290, 640-647.	4.0	62
56	Realizing the Control of Electronic Energy Level Structure and Gas-Sensing Selectivity over Heteroatom-Doped In ₂ O ₃ Spheres with an Inverse Opal Microstructure. ACS Applied Materials & Description (1988) amp; Interfaces, 2019, 11, 9600-9611.	4.0	76
57	High-response mixed-potential type planar YSZ-based NO2 sensor coupled with CoTiO3 sensing electrode. Sensors and Actuators B: Chemical, 2019, 287, 185-190.	4.0	36
58	Giant "Breathing―Proteinosomes with Jellyfish-like Property. ACS Applied Materials & Interfaces, 2019, 11, 47619-47624.	4.0	14
59	Highly selective and stable mixed-potential type gas sensor based on stabilized zirconia and Cd2V2O7 sensing electrode for NH3 detection. Sensors and Actuators B: Chemical, 2019, 279, 213-222.	4.0	45
60	Highly selective and sensitive xylene gas sensor fabricated from NiO/NiCr2O4 p-p nanoparticles. Sensors and Actuators B: Chemical, 2019, 284, 305-315.	4.0	106
61	Bimetallic gold/silver nanoclusters-gold nanoparticles based fluorescent sensing platform via the inner filter effect for hyaluronidase activity detection. Sensors and Actuators B: Chemical, 2019, 282, 45-51.	4.0	46
62	Sensitive fluorescence sensor for point-of-care detection of trypsin using glutathione-stabilized gold nanoclusters. Sensors and Actuators B: Chemical, 2019, 282, 366-372.	4.0	39
63	Switchable fluorescence immunoassay using gold nanoclusters anchored cobalt oxyhydroxide composite for sensitive detection of imidacloprid. Sensors and Actuators B: Chemical, 2019, 283, 207-214.	4.0	55
64	Ultrasensitive detection alkaline phosphatase activity using 3-aminophenylboronic acid functionalized gold nanoclusters. Sensors and Actuators B: Chemical, 2019, 281, 175-181.	4.0	28
65	Sensitive sensing of enzyme-regulated biocatalytic reactions using gold nanoclusters-melanin-like polymer nanosystem. Sensors and Actuators B: Chemical, 2019, 279, 281-288.	4.0	9
66	The mixed potential type gas sensor based on stabilized zirconia and molybdate MMoO4 (M: Ni, Co and) Tj ETQq 430-437.	0 0 0 rgBT 4.0	Overlock 10 29
67	Highly photoluminescent carbon dots derived from linseed and their applications in cellular imaging and sensing. Journal of Materials Chemistry B, 2018, 6, 3181-3187.	2.9	54
68	Coreâ€"shell PdPb@Pd aerogels with multiply-twinned intermetallic nanostructures: facile synthesis with accelerated gelation kinetics and their enhanced electrocatalytic properties. Journal of Materials Chemistry A, 2018, 6, 7517-7521.	5.2	49
69	Yellow-Emissive Carbon Dot-Based Optical Sensing Platforms: Cell Imaging and Analytical Applications for Biocatalytic Reactions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7737-7744.	4.0	87
70	Ultrathin dendritic IrTe nanotubes for an efficient oxygen evolution reaction in a wide pH range. Journal of Materials Chemistry A, 2018, 6, 8855-8859.	5 . 2	54
71	Review of optical sensors for pesticides. TrAC - Trends in Analytical Chemistry, 2018, 103, 1-20.	5.8	287
72	Highly sensitive and selective triethylamine gas sensor based on porous SnO2/Zn2SnO4 composites. Sensors and Actuators B: Chemical, 2018, 266, 213-220.	4.0	123

#	Article	IF	Citations
73	MnO ₂ Nanosheet-Carbon Dots Sensing Platform for Sensitive Detection of Organophosphorus Pesticides. Analytical Chemistry, 2018, 90, 2618-2624.	3.2	288
74	Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Materials Today, 2018, 21, 164-177.	8.3	145
75	Porous graphene doped with Fe/N/S and incorporating Fe ₃ O ₄ nanoparticles for efficient oxygen reduction. Catalysis Science and Technology, 2018, 8, 5325-5333.	2.1	33
76	Novel Self-Assembly Route Assisted Ultra-Fast Trace Volatile Organic Compounds Gas Sensing Based on Three-Dimensional Opal Microspheres Composites for Diabetes Diagnosis. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32913-32921.	4.0	40
77	Ultra-sensitive sensing platform based on Pt-ZnO-ln2O3 nanofibers for detection of acetone. Sensors and Actuators B: Chemical, 2018, 272, 185-194.	4.0	90
78	Nafion-based amperometric H2S sensor using Pt-Rh/C sensing electrode. Sensors and Actuators B: Chemical, 2018, 273, 635-641.	4.0	30
79	Ultrafast-response stabilized zirconia-based mixed potential type triethylamine sensor utilizing CoMoO4 sensing electrode. Sensors and Actuators B: Chemical, 2018, 272, 433-440.	4.0	24
80	Facile synthesis of nitrogen and sulfur co-doped carbon dots for multiple sensing capacities: alkaline fluorescence enhancement effect, temperature sensing, and selective detection of Fe ³⁺ ions. New Journal of Chemistry, 2018, 42, 13147-13156.	1.4	26
81	Direct Cytosolic MicroRNA Detection Using Single-Layer Perfluorinated Tungsten Diselenide Nanoplatform. Analytical Chemistry, 2018, 90, 10369-10376.	3.2	14
82	3D inverse opal nanostructured multilayer films of two-component heterostructure composites: A new-generation synthetic route and potential application as high-performance acetone detector. Sensors and Actuators B: Chemical, 2018, 276, 262-270.	4.0	30
83	The facile synthesis of MoO ₃ microsheets and their excellent gas-sensing performance toward triethylamine: high selectivity, excellent stability and superior repeatability. New Journal of Chemistry, 2018, 42, 15111-15120.	1.4	73
84	Enhanced room temperature gas sensor based on Au-loaded mesoporous In2O3 nanospheres@polyaniline core-shell nanohybrid assembled on flexible PET substrate for NH3 detection. Sensors and Actuators B: Chemical, 2018, 276, 526-533.	4.0	95
85	Room temperature high performance NH3 sensor based on GO-rambutan-like polyaniline hollow nanosphere hybrid assembled to flexible PET substrate. Sensors and Actuators B: Chemical, 2018, 273, 726-734.	4.0	63
86	Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosensors and Bioelectronics, 2017, 94, 292-297.	5.3	263
87	Solvent co-mediated synthesis of ultrathin BiOCl nanosheets with highly efficient visible-light photocatalytic activity. RSC Advances, 2017, 7, 10235-10241.	1.7	31
88	Highly uniform distribution of Pt nanoparticles on N-doped hollow carbon spheres with enhanced durability for oxygen reduction reaction. RSC Advances, 2017, 7, 6303-6308.	1.7	44
89	A novel fluorimetric sensing platform for highly sensitive detection of organophosphorus pesticides by using egg white-encapsulated gold nanoclusters. Biosensors and Bioelectronics, 2017, 91, 232-237.	5.3	141
90	Oxidase-mimicking activity of ultrathin MnO ₂ nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale, 2017, 9, 2317-2323.	2.8	194

#	Article	IF	CITATIONS
91	Sensitive fluorescence detection of ATP based on host-guest recognition between near-infrared β-Cyclodextrin-CulnS2 QDs and aptamer. Talanta, 2017, 165, 194-200.	2.9	31
92	Intermetallic Pd ₃ Pb nanowire networks boost ethanol oxidation and oxygen reduction reactions with significantly improved methanol tolerance. Journal of Materials Chemistry A, 2017, 5, 23952-23959.	5.2	78
93	One-step synthesis of carbon nanosheet-decorated carbon nanofibers as a 3D interconnected porous carbon scaffold for lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 23737-23743.	5.2	36
94	Kinetically controlled synthesis of AuPt bi-metallic aerogels and their enhanced electrocatalytic performances. Journal of Materials Chemistry A, 2017, 5, 19626-19631.	5.2	44
95	Mitochondrial-targeted multifunctional mesoporous Au@Pt nanoparticles for dual-mode photodynamic and photothermal therapy of cancers. Nanoscale, 2017, 9, 15813-15824.	2.8	67
96	Improvement of NO ₂ sensing characteristic for mixed potential type gas sensor based on YSZ and Rh/Co ₃ V ₂ O ₈ sensing electrode. RSC Advances, 2017, 7, 49440-49445.	1.7	11
97	A Novel Localization Algorithm Based on Steepest Descent Method for the Wireless Sensor Network. International Journal of Control and Automation, 2017, 10, 333-344.	0.3	0
98	Aptamer-based aggregation assay for mercury(II) using gold nanoparticles and fluorescent CdTe quantum dots. Mikrochimica Acta, 2016, 183, 2131-2137.	2.5	38
99	Graphene Quantum Dot–MnO ₂ Nanosheet Based Optical Sensing Platform: A Sensitive Fluorescence "Turn Off–On―Nanosensor for Glutathione Detection and Intracellular Imaging. ACS Applied Materials & Detection and Intracellular Imaging. ACS	4.0	220
100	A label-free and sensitive fluorescent assay for one step detection of protein kinase activity and inhibition. Analytica Chimica Acta, 2016, 935, 224-230.	2.6	19
101	A novel ratiometric dual-emission fluorescence magnetic nanohybrid for HlgG immunoassay. New Journal of Chemistry, 2016, 40, 6860-6866.	1.4	2
102	Label-free fluorescent assay for high sensitivity and selectivity detection of acid phosphatase and inhibitor screening. Sensors and Actuators B: Chemical, 2016, 234, 470-477.	4.0	31
103	Near-infrared fluorescence nanoprobe for enzyme-substrate system sensing and in vitro imaging. Biosensors and Bioelectronics, 2016, 79, 922-929.	5.3	35
104	A highly sensitive dual-readout assay based on gold nanoclusters for folic acid detection. Mikrochimica Acta, 2015, 182, 1281-1288.	2.5	29
105	A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect. Biosensors and Bioelectronics, 2015, 74, 277-283.	5.3	219
106	Visual and Fluorescent Detection of Tyrosinase Activity by Using a Dual-Emission Ratiometric Fluorescence Probe. Analytical Chemistry, 2015, 87, 8904-8909.	3.2	143
107	Selective detection of parathion-methyl based on near-infrared CulnS2 quantum dots. Food Chemistry, 2015, 173, 179-184.	4.2	70
108	A novel fluorescence probing strategy for the determination of parathion-methyl. Talanta, 2015, 131, 88-94.	2.9	67

#	Article	IF	CITATION
109	Fluorescence detection of adenosine-5′-triphosphate and alkaline phosphatase based on the generation of CdS quantum dots. Analytica Chimica Acta, 2014, 827, 103-110.	2.6	32
110	Rapid Detection of Four Organophosphorous and Neonicotinoid Toxicants Using Bi-enzyme Tracer Competitive Enzyme-Linked Immunosorbent Assay. Food Analytical Methods, 2014, 7, 1186-1194.	1.3	11
111	Visual and fluorescent detection of acetamiprid based on the inner filter effect of gold nanoparticles on ratiometric fluorescence quantum dots. Analytica Chimica Acta, 2014, 852, 189-195.	2.6	95
112	Developments in pesticide analysis by multi-analyte immunoassays: a review. Analytical Methods, 2014, 6, 3543.	1.3	48
113	Development of a bi-enzyme tracer competitive enzyme-linked immunosorbent assay for detection of thiacloprid and imidaclothiz in agricultural samples. Food Chemistry, 2014, 164, 166-172.	4.2	21
114	Time-resolved fluoroimmunoassay for quantitative determination of thiacloprid in agricultural samples. Analytical Methods, 2013, 5, 3572.	1.3	15
115	Development of a chemiluminescence enzyme-linked immunosorbent assay for the simultaneous detection of imidaclothiz and thiacloprid in agricultural samples. Analyst, The, 2013, 138, 3280.	1.7	30
116	Development of an enzyme-linked immunosorbent assay for the simultaneous determination of parathion and imidacloprid. Analytical Methods, 2012, 4, 4053.	1.3	27