Stuart West

List of Publications by Citations

Source: https://exaly.com/author-pdf/8211375/stuart-west-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

22,887 256 146 75 h-index g-index citations papers 286 26,558 8.3 7.27 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
256	Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. <i>Journal of Evolutionary Biology</i> , 2007 , 20, 415-32	2.3	1070
255	Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. <i>Science</i> , 2011 , 333, 880-2	33.3	1058
254	Social evolution theory for microorganisms. <i>Nature Reviews Microbiology</i> , 2006 , 4, 597-607	22.2	797
253	Cooperation and competition in pathogenic bacteria. <i>Nature</i> , 2004 , 430, 1024-7	50.4	711
252	Host sanctions and the legume-rhizobium mutualism. <i>Nature</i> , 2003 , 425, 78-81	50.4	707
251	Evolutionary explanations for cooperation. <i>Current Biology</i> , 2007 , 17, R661-72	6.3	656
250	Cooperation and competition between relatives. <i>Science</i> , 2002 , 296, 72-5	33.3	607
249	Cooperation and conflict in quorum-sensing bacterial populations. <i>Nature</i> , 2007 , 450, 411-4	50.4	582
248	The Social Lives of Microbes. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 2007 , 38, 53-77	13.5	478
247	Evolutionary Theory and the Ultimate-Proximate Distinction in the Human Behavioral Sciences. <i>Perspectives on Psychological Science</i> , 2011 , 6, 38-47	9.8	423
246	Sixteen common misconceptions about the evolution of cooperation in humans. <i>Evolution and Human Behavior</i> , 2011 , 32, 231-262	4	391
245	Constraints in the evolution of sex ratio adjustment. <i>Science</i> , 2002 , 295, 1685-8	33.3	378
244	A pluralist approach to sex and recombination. <i>Journal of Evolutionary Biology</i> , 1999 , 12, 1003-1012	2.3	377
243	Sex Allocation 2009 ,		367
242	Maternal dominance, maternal condition, and offspring sex ratio in ungulate mammals. <i>American Naturalist</i> , 2004 , 163, 40-54	3.7	339
241	Kin discrimination and the benefit of helping in cooperatively breeding vertebrates. <i>Science</i> , 2003 , 302, 634-6	33.3	323
240	MalellilingWolbachiain two species of insect. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1999 , 266, 735-740	4.4	284

239	Kin selection: fact and fiction. <i>Trends in Ecology and Evolution</i> , 2002 , 17, 15-21	10.9	278
238	Promiscuity and the evolutionary transition to complex societies. <i>Nature</i> , 2010 , 466, 969-72	50.4	277
237	The genetical theory of kin selection. <i>Journal of Evolutionary Biology</i> , 2011 , 24, 1020-43	2.3	273
236	Sanctions and mutualism stability: why do rhizobia fix nitrogen?. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2002 , 269, 685-94	4.4	254
235	Cooperation, virulence and siderophore production in bacterial parasites. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2003 , 270, 37-44	4.4	243
234	Inclusive fitness theory and eusociality. <i>Nature</i> , 2011 , 471, E1-4; author reply E9-10	50.4	242
233	Testing Hamilton@rule with competition between relatives. <i>Nature</i> , 2001 , 409, 510-3	50.4	224
232	Quorum sensing and the social evolution of bacterial virulence. <i>Current Biology</i> , 2009 , 19, 341-5	6.3	211
231	Frequency dependence and cooperation: theory and a test with bacteria. <i>American Naturalist</i> , 2007 , 170, 331-42	3.7	204
230	Group selection and kin selection: two concepts but one process. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 6736-9	11.5	197
229	Density-dependent fitness benefits in quorum-sensing bacterial populations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 8259-63	11.5	194
228	Greenbeards. Evolution; International Journal of Organic Evolution, 2010, 64, 25-38	3.8	186
227	Bacteriocins, spite and virulence. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2004 , 271, 1529	-3454	186
226	Cooperation and Punishment, Especially in Humans. American Naturalist, 2004, 164, 753-764	3.7	180
225	Altruism, spite, and greenbeards. <i>Science</i> , 2010 , 327, 1341-4	33.3	175
224	Major evolutionary transitions in individuality. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 10112-9	11.5	174
223	Evolutionary theory of bacterial quorum sensing: when is a signal not a signal?. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2007 , 362, 1241-9	5.8	173
222	Wolbachia in two insect host-parasitoid communities. <i>Molecular Ecology</i> , 1998 , 7, 1457-65	5.7	159

221	Cooperation and the scale of competition in humans. Current Biology, 2006, 16, 1103-6	6.3	159
220	Spite and the scale of competition. <i>Journal of Evolutionary Biology</i> , 2004 , 17, 1195-203	2.3	158
219	Demography, altruism, and the benefits of budding. <i>Journal of Evolutionary Biology</i> , 2006 , 19, 1707-16	2.3	150
218	Viscous medium promotes cooperation in the pathogenic bacterium Pseudomonas aeruginosa. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2009 , 276, 3531-8	4.4	147
217	Sanctions and mutualism stability: when should less beneficial mutualists be tolerated?. <i>Journal of Evolutionary Biology</i> , 2002 , 15, 830-837	2.3	143
216	The niche construction perspective: a critical appraisal. <i>Evolution; International Journal of Organic Evolution</i> , 2014 , 68, 1231-43	3.8	136
215	The evolution of altruism in humans. Annual Review of Psychology, 2015, 66, 575-99	26.1	135
214	Adaptation and the evolution of parasite virulence in a connected world. <i>Nature</i> , 2009 , 459, 983-6	50.4	134
213	Limited dispersal, budding dispersal, and cooperation: an experimental study. <i>Evolution; International Journal of Organic Evolution</i> , 2009 , 63, 939-49	3.8	133
212	Darwinian agriculture: when can humans find solutions beyond the reach of natural selection?. <i>Quarterly Review of Biology</i> , 2003 , 78, 145-68	5.4	133
211	The ecology of the New World fig-parasitizing wasps Idarnes and implications for the evolution of the figpollinator mutualism. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1994 , 258, 67-72	4.4	127
210	The ecology and evolution of the New World non-pollinating fig wasp communities. <i>Journal of Biogeography</i> , 1996 , 23, 447-458	4.1	124
209	Evolution. The benefits of allocating sex. <i>Science</i> , 2000 , 290, 288-90	33.3	123
208	Quorum-sensing and cheating in bacterial biofilms. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2012 , 279, 4765-71	4.4	122
207	Learning, odour preference and flower foraging in moths. <i>Journal of Experimental Biology</i> , 2004 , 207, 87-94	3	122
206	Siderophore-mediated cooperation and virulence in Pseudomonas aeruginosa. <i>FEMS Microbiology Ecology</i> , 2007 , 62, 135-41	4.3	119
205	Routes to indirect fitness in cooperatively breeding vertebrates: kin discrimination and limited dispersal. <i>Journal of Evolutionary Biology</i> , 2009 , 22, 2445-57	2.3	117
204	The relation between multilocus population genetics and social evolution theory. <i>American Naturalist</i> , 2007 , 169, 207-26	3.7	116

203	Sex ratios. <i>Heredity</i> , 2002 , 88, 117-24	3.6	115
202	Quorum sensing and the confusion about diffusion. <i>Trends in Microbiology</i> , 2012 , 20, 586-94	12.4	114
201	The evolution of host-symbiont dependence. <i>Nature Communications</i> , 2017 , 8, 15973	17.4	112
200	Toward an evolutionary definition of cheating. <i>Evolution; International Journal of Organic Evolution</i> , 2014 , 68, 318-31	3.8	112
199	Phenotypic plasticity of a cooperative behaviour in bacteria. <i>Journal of Evolutionary Biology</i> , 2009 , 22, 589-98	2.3	112
198	Conflict of interest in a mutualism: documenting the elusive fig waspBeed tradeBff. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1997 , 264, 1501-1507	4.4	111
197	SEX-RATIO ADJUSTMENT WHEN RELATIVES INTERACT: A TEST OF CONSTRAINTS ON ADAPTATION. <i>Evolution; International Journal of Organic Evolution</i> , 2005 , 59, 1211-1228	3.8	106
196	Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2009 , 364, 3157-68	5.8	101
195	Information constraints and the precision of adaptation: sex ratio manipulation in wasps. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 10363-7	11.5	101
194	Adaptation and inclusive fitness. <i>Current Biology</i> , 2013 , 23, R577-84	6.3	100
193	The Relationship between Parasitoid Size and Fitness in the Field, a Study of Achrysocharoides zwoelferi (Hymenoptera: Eulophidae). <i>Journal of Animal Ecology</i> , 1996 , 65, 631	4.7	99
192	Group formation, relatedness, and the evolution of multicellularity. <i>Current Biology</i> , 2013 , 23, 1120-5	6.3	94
191	Prosocial preferences do not explain human cooperation in public-goods games. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 216-21	11.5	92
190	Density dependence and cooperation: theory and a test with bacteria. <i>Evolution; International Journal of Organic Evolution</i> , 2009 , 63, 2315-25	3.8	90
189	Social semantics: how useful has group selection been?. <i>Journal of Evolutionary Biology</i> , 2008 , 21, 374-3	3853	90
188	The illusion of invariant quantities in life histories. <i>Science</i> , 2005 , 309, 1236-9	33.3	90
187	The dynamics of cooperative bacterial virulence in the field. <i>Science</i> , 2012 , 337, 85-8	33.3	89
186	Fewer invited talks by women in evolutionary biology symposia. <i>Journal of Evolutionary Biology</i> , 2013 , 26, 2063-9	2.3	88

185	Sex ratios under asymmetrical local mate competition: theory and a test with parasitoid wasps. <i>American Naturalist</i> , 2005 , 166, 301-16	3.7	88
184	Mechanisms of pathogenesis, infective dose and virulence in human parasites. <i>PLoS Pathogens</i> , 2012 , 8, e1002512	7.6	82
183	Cooperation, quorum sensing, and evolution of virulence in Staphylococcus aureus. <i>Infection and Immunity</i> , 2014 , 82, 1045-51	3.7	77
182	Evolution of gametocyte sex ratios in malaria and related apicomplexan (protozoan) parasites. <i>Trends in Parasitology</i> , 2001 , 17, 525-31	6.4	76
181	Mediating mutualisms: farm management practices and evolutionary changes in symbiont co-operation. <i>Journal of Applied Ecology</i> , 2002 , 39, 745-754	5.8	74
180	Spiteful soldiers and sex ratio conflict in polyembryonic parasitoid wasps. <i>American Naturalist</i> , 2007 , 169, 519-33	3.7	73
179	Division of labour in microorganisms: an evolutionary perspective. <i>Nature Reviews Microbiology</i> , 2016 , 14, 716-723	22.2	72
178	Cooperative breeders adjust offspring sex ratios to produce helpful helpers. <i>American Naturalist</i> , 2005 , 166, 628-32	3.7	72
177	Understanding patterns of genetic diversity in the oak gallwasp Biorhiza pallida: demographic history or a Wolbachia selective sweep?. <i>Heredity</i> , 2001 , 87, 294-304	3.6	71
176	Fitness correlates with the extent of cheating in a bacterium. <i>Journal of Evolutionary Biology</i> , 2010 , 23, 738-47	2.3	70
175	Sex-ratio evolution in sex changing animals. <i>Evolution; International Journal of Organic Evolution</i> , 2004 , 58, 1019-27	3.8	70
174	Is bacterial persistence a social trait?. <i>PLoS ONE</i> , 2007 , 2, e752	3.7	68
173	Conditional cooperation and confusion in public-goods experiments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 1291-6	11.5	67
172	Alternative mating tactics and extreme male dimorphism in fig wasps. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1997 , 264, 747-754	4.4	66
171	Cooperation facilitates the colonization of harsh environments. <i>Nature Ecology and Evolution</i> , 2017 , 1, 57	12.3	64
170	Constant relative age and size at sex change for sequentially hermaphroditic fish. <i>Journal of Evolutionary Biology</i> , 2003 , 16, 921-9	2.3	64
169	Local mate competition, variable fecundity and information use in a parasitoid. <i>Animal Behaviour</i> , 1998 , 56, 191-8	2.8	63
168	Resistance to extreme strategies, rather than prosocial preferences, can explain human cooperation in public goods games. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2010 107 10125-30	11.5	62

(2015-2017)

167	Sociovirology: Conflict, Cooperation, and Communication among Viruses. <i>Cell Host and Microbe</i> , 2017 , 22, 437-441	23.4	61	
166	A biological market analysis of the plant-mycorrhizal symbiosis. <i>Evolution; International Journal of Organic Evolution</i> , 2014 , 68, 2603-18	3.8	59	
165	A general model for host plant selection in phytophagous insects. <i>Journal of Theoretical Biology</i> , 2002 , 214, 499-513	2.3	59	
164	Kin selection, quorum sensing and virulence in pathogenic bacteria. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2012 , 279, 3584-8	4.4	58	
163	Fertility insurance and the sex ratios of malaria and related hemospororin blood parasites. <i>Journal of Parasitology</i> , 2002 , 88, 258-63	0.9	57	
162	Pollination and parasitism in functionally dioecious figs. <i>Proceedings of the Royal Society B:</i> Biological Sciences, 2001 , 268, 651-9	4.4	56	
161	FigBssociated wasps: pollinators and parasites, sexfatio adjustment and male polymorphism, population structure and its consequences 1997 , 226-239		56	
160	Loss of social behaviours in populations of Pseudomonas aeruginosa infecting lungs of patients with cystic fibrosis. <i>PLoS ONE</i> , 2014 , 9, e83124	3.7	55	
159	Facultative sex ratio adjustment in natural populations of wasps: cues of local mate competition and the precision of adaptation. <i>American Naturalist</i> , 2008 , 172, 393-404	3.7	55	
158	Mycorrhizal Fungi Respond to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks. <i>Current Biology</i> , 2019 , 29, 2043-2050.e8	6.3	54	
157	Sex allocation and population structure in apicomplexan (protozoa) parasites. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2000 , 267, 257-63	4.4	54	
156	Promiscuity and the evolution of cooperative breeding. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2012 , 279, 1405-11	4.4	53	
155	Split sex ratios in the social Hymenoptera: a meta-analysis. <i>Behavioral Ecology</i> , 2008 , 19, 382-390	2.3	53	
154	Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5229-5234	11.5	52	
153	Unpredictable environments lead to the evolution of parental neglect in birds. <i>Nature Communications</i> , 2016 , 7, 10985	17.4	52	
152	Cooperation in humans: competition between groups and proximate emotions. <i>Evolution and Human Behavior</i> , 2010 , 31, 104-108	4	52	
151	A sex allocation theory for vertebrates: combining local resource competition and condition-dependent allocation. <i>American Naturalist</i> , 2007 , 170, E112-28	3.7	52	
150	Evolutionary biology. Evolving new organisms via symbiosis. <i>Science</i> , 2015 , 348, 392-4	33.3	50	

149	Ecology, not the genetics of sex determination, determines who helps in eusocial populations. <i>Current Biology</i> , 2013 , 23, 2383-7	6.3	50
148	Learning in the nectar foraging behaviour of Helicoverpa armigera. <i>Ecological Entomology</i> , 1998 , 23, 363-369	2.1	49
147	The costs and benefits of host feeding in parasitoids. <i>Animal Behaviour</i> , 2005 , 69, 1293-1301	2.8	49
146	Social evolution: the decline and fall of genetic kin recognition. <i>Current Biology</i> , 2007 , 17, R810-2	6.3	48
145	Kin discrimination and sex ratios in a parasitoid wasp. <i>Journal of Evolutionary Biology</i> , 2004 , 17, 208-16	2.3	48
144	Host cell preference and variable transmission strategies in malaria parasites. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2005 , 272, 511-7	4.4	48
143	Spatial structure and interspecific cooperation: theory and an empirical test using the mycorrhizal mutualism. <i>American Naturalist</i> , 2012 , 179, E133-46	3.7	47
142	A comparative study of virginity in fig wasps. <i>Animal Behaviour</i> , 1997 , 54, 437-50	2.8	47
141	Life history: changing sex at the same relative body size. <i>Nature</i> , 2003 , 425, 783-4	50.4	46
140	Host selection in phytophagous insects: a new explanation for learning in adults. <i>Oikos</i> , 2001 , 95, 537-5	43	45
140	Host selection in phytophagous insects: a new explanation for learning in adults. <i>Oikos</i> , 2001 , 95, 537-5 Payoff-based learning explains the decline in cooperation in public goods games. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2015 , 282, 20142678	4 <u>3</u> 4.4	45
<i>'</i>	Payoff-based learning explains the decline in cooperation in public goods games. <i>Proceedings of the</i>		
139	Payoff-based learning explains the decline in cooperation in public goods games. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2015 , 282, 20142678 An experimental test of whether cheating is context dependent. <i>Journal of Evolutionary Biology</i> ,	4.4	44
139	Payoff-based learning explains the decline in cooperation in public goods games. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2015 , 282, 20142678 An experimental test of whether cheating is context dependent. <i>Journal of Evolutionary Biology</i> , 2014 , 27, 551-6 How do communication systems emerge?. <i>Proceedings of the Royal Society B: Biological Sciences</i> ,	4.4	44
139 138 137	Payoff-based learning explains the decline in cooperation in public goods games. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2015 , 282, 20142678 An experimental test of whether cheating is context dependent. <i>Journal of Evolutionary Biology</i> , 2014 , 27, 551-6 How do communication systems emerge?. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2012 , 279, 1943-9 Sex Ratio Strategies After Perturbation of the Stable Age Distribution. <i>Journal of Theoretical</i>	4·4 2·3 4·4	44 44 44
139 138 137	Payoff-based learning explains the decline in cooperation in public goods games. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2015 , 282, 20142678 An experimental test of whether cheating is context dependent. <i>Journal of Evolutionary Biology</i> , 2014 , 27, 551-6 How do communication systems emerge?. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2012 , 279, 1943-9 Sex Ratio Strategies After Perturbation of the Stable Age Distribution. <i>Journal of Theoretical Biology</i> , 1997 , 186, 213-221	4·4 2·3 4·4	44 44 44
139 138 137 136	Payoff-based learning explains the decline in cooperation in public goods games. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2015 , 282, 20142678 An experimental test of whether cheating is context dependent. <i>Journal of Evolutionary Biology</i> , 2014 , 27, 551-6 How do communication systems emerge?. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2012 , 279, 1943-9 Sex Ratio Strategies After Perturbation of the Stable Age Distribution. <i>Journal of Theoretical Biology</i> , 1997 , 186, 213-221 Haplodiploidy and the evolution of eusociality: split sex ratios. <i>American Naturalist</i> , 2012 , 179, 240-56 The enforcement of cooperation by policing. <i>Evolution; International Journal of Organic Evolution</i> ,	4.4 2.3 4.4 2.3	44 44 44 43

(2007-1999)

131	Sex allocation and clutch size in parasitoid wasps that produce single-sex broods. <i>Animal Behaviour</i> , 1999 , 57, 265-275	2.8	41	
130	Male influence on sex allocation in the parasitoid wasp Nasonia vitripennis. <i>Behavioral Ecology and Sociobiology</i> , 2006 , 59, 829-835	2.5	40	
129	Inbreeding and parasite sex ratios. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2002 , 269, 75.	5- <u>6.Q</u>	40	
128	Sex-ratio adjustment when relatives interact: a test of constraints on adaptation. <i>Evolution; International Journal of Organic Evolution</i> , 2005 , 59, 1211-28	3.8	40	
127	The PSL Polysaccharide Is a Social but Noncheatable Trait in Biofilms. MBio, 2017, 8,	7.8	39	
126	Bacteria Use Collective Behavior to Generate Diverse Combat Strategies. <i>Current Biology</i> , 2018 , 28, 345	5-8∕55.€	:4 39	
125	Co-evolutionary dynamics between public good producers and cheats in the bacterium Pseudomonas aeruginosa. <i>Journal of Evolutionary Biology</i> , 2015 , 28, 2264-74	2.3	38	
124	Wasp sex ratios when females on a patch are related. <i>Animal Behaviour</i> , 2004 , 68, 331-336	2.8	38	
123	Inclusive fitness: 50 years on. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369, 20130356	5.8	37	
122	Genomic imprinting and sex allocation. <i>American Naturalist</i> , 2009 , 173, E1-14	3.7	37	
121	Division of labour and the evolution of extreme specialization. <i>Nature Ecology and Evolution</i> , 2018 , 2, 1161-1167	12.3	37	
120	Sex ratios under asymmetrical local mate competition in the parasitoid wasp Nasonia vitripennis. <i>Behavioral Ecology</i> , 2006 , 17, 345-352	2.3	36	
119	Pseudocompetition among groups increases human cooperation in a public-goods game. <i>Animal Behaviour</i> , 2012 , 84, 947-952	2.8	35	
118	Fighting strategies in two species of fig wasp. <i>Animal Behaviour</i> , 2008 , 76, 315-322	2.8	35	
117	Using sex ratios to estimate what limits reproduction in parasitoids. <i>Ecology Letters</i> , 2000 , 3, 294-299	10	34	
116	Selective Regime and Fig Wasp Sex Ratios: Toward Sorting Rigor from Pseudo-Rigor in Tests of Adaptation 2001 , 191-218		34	
115	Combined inequality in wealth and risk leads to disaster in the climate change game. <i>Climatic Change</i> , 2013 , 120, 815-830	4.5	33	
114	The quantitative genetic basis of polyandry in the parasitoid wasp, Nasonia vitripennis. <i>Heredity</i> , 2007 , 98, 69-73	3.6	33	

113	The evolution of host use and unusual reproductive strategies in Achrysocharoides parasitoid wasps. <i>Journal of Evolutionary Biology</i> , 2005 , 18, 1029-41	2.3	33
112	Multicoloured greenbeards, bacteriocin diversity and the rock-paper-scissors game. <i>Journal of Evolutionary Biology</i> , 2013 , 26, 2081-94	2.3	31
111	Stabilizing Selection and Variance in Fig Wasp Sex Ratios. <i>Evolution; International Journal of Organic Evolution</i> , 1998 , 52, 475	3.8	30
110	Growth rate, transmission mode and virulence in human pathogens. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2017 , 372,	5.8	29
109	Bacteriocin-mediated competition in cystic fibrosis lung infections. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2015 , 282,	4.4	29
108	Repression of competition favours cooperation: experimental evidence from bacteria. <i>Journal of Evolutionary Biology</i> , 2010 , 23, 699-706	2.3	29
107	Asymmetric larval competition in the parasitoid wasp Nasonia vitripennis: a role in sex allocation?. <i>Behavioral Ecology and Sociobiology</i> , 2007 , 61, 1751-1758	2.5	29
106	Spite. Current Biology, 2006 , 16, R662-4	6.3	29
105	Lethal combat over limited resources: testing the importance of competitors and kin. <i>Behavioral Ecology</i> , 2011 , 22, 923-931	2.3	28
104	Sex ratios in the rodent malaria parasite, Plasmodium chabaudi. <i>Parasitology</i> , 2003 , 127, 419-25	2.7	28
103	Competition between relatives and the evolution of dispersal in a parasitoid wasp. <i>Journal of Evolutionary Biology</i> , 2010 , 23, 1374-85	2.3	27
102	Conflict of interest and signal interference lead to the breakdown of honest signaling. <i>Evolution; International Journal of Organic Evolution</i> , 2015 , 69, 2371-83	3.8	26
101	Multicellular group formation in response to predators in the alga Chlorella vulgaris. <i>Journal of Evolutionary Biology</i> , 2016 , 29, 551-9	2.3	26
100	Lethal combat and sex ratio evolution in a parasitoid wasp. <i>Behavioral Ecology</i> , 2007 , 18,	2.3	26
99	Immune stress and facultative sex in a parasitic nematode. <i>Journal of Evolutionary Biology</i> , 2001 , 14, 33	323337	26
98	Learning in a black box. Journal of Economic Behavior and Organization, 2016, 127, 1-15	1.6	25
97	Cheating and resistance to cheating in natural populations of the bacterium Pseudomonas fluorescens. <i>Evolution; International Journal of Organic Evolution</i> , 2017 , 71, 2484-2495	3.8	25
96	The quantitative genetic basis of sex ratio variation in Nasonia vitripennis: a QTL study. <i>Journal of Evolutionary Biology</i> , 2011 , 24, 12-22	2.3	25

(2011-2011)

95	Sexual conflict in viscous populations: the effect of the timing of dispersal. <i>Theoretical Population Biology</i> , 2011 , 80, 298-316	1.2	25	
94	The causes and consequences of variation in offspring size: a case study using Daphnia. <i>Journal of Evolutionary Biology</i> , 2007 , 20, 577-87	2.3	25	
93	Sibling conflict and dishonest signaling in birds. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 13803-13808	11.5	24	
92	Laboratory evolution of polyandry in the parasitoid wasp Nasonia vitripennis. <i>Animal Behaviour</i> , 2007 , 74, 1147-1154	2.8	24	
91	Ecology. Spite among siblings. <i>Science</i> , 2004 , 305, 1413-4	33.3	24	
90	Pleiotropy, cooperation, and the social evolution of genetic architecture. <i>PLoS Biology</i> , 2018 , 16, e2006	56 3.†	24	
89	Lethal maleThale combat in the parasitoid Melittobia acasta: are size and competitive environment important?. <i>Animal Behaviour</i> , 2007 , 74, 1163-1169	2.8	23	
88	Effects of spontaneous mutation accumulation on sex ratio traits in a parasitoid wasp. <i>Evolution; International Journal of Organic Evolution</i> , 2008 , 62, 1921-35	3.8	23	
87	Variable host quality, life-history invariants, and the reproductive strategy of a parasitoid wasp that produces single sex clutches. <i>Behavioral Ecology</i> , 2001 , 12, 577-583	2.3	23	
86	Seasonal variation in the sex allocation of a neotropical solitary bee. <i>Behavioral Ecology</i> , 1999 , 10, 401-	40 83	23	
85	Altruism. Current Biology, 2006 , 16, R482-3	6.3	22	
84	Compartmentalization drives the evolution of symbiotic cooperation. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2020 , 375, 20190602	5.8	21	
83	Bacteriocins and the assembly of natural Pseudomonas fluorescens populations. <i>Journal of Evolutionary Biology</i> , 2017 , 30, 352-360	2.3	20	
82	Information use in space and time: sex allocation behaviour in the parasitoid wasp. <i>Animal Behaviour</i> , 2007 , 73, 971-971	2.8	20	
81	Testing small clutch size models with Daphnia. American Naturalist, 2004, 163, 880-7	3.7	20	
8o	A dimensionless invariant for relative size at sex change in animals: explanation and implications. <i>American Naturalist</i> , 2005 , 165, 551-66	3.7	20	
79	Beneficial coinfection can promote within-host viral diversity. Virus Evolution, 2018, 4, vey028	3.7	20	
78	Are greenbeards intragenomic outlaws?. <i>Evolution; International Journal of Organic Evolution</i> , 2011 , 65, 2729-42	3.8	19	

77	Figs and fig wasps. Current Biology, 2005, 15, R978-80	6.3	19
76	Extremely female-biased primary sex ratio and precisely constant male production in a parasitoid wasp Melittobia. <i>Animal Behaviour</i> , 2009 , 78, 515-523	2.8	18
75	Testing for epistasis between deleterious mutations in a parasitoid wasp. <i>Evolution; International Journal of Organic Evolution</i> , 2003 , 57, 1698-703	3.8	18
74	Social learning and the demise of costly cooperation in humans. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2017 , 284,	4.4	17
73	Ten recent insights for our understanding of cooperation. <i>Nature Ecology and Evolution</i> , 2021 , 5, 419-43	302.3	17
72	Misconceptions on the application of biological market theory to the mycorrhizal symbiosis. <i>Nature Plants</i> , 2016 , 2, 16063	11.5	16
71	Bees at war: interspecific battles and nest usurpation in stingless bees. <i>American Naturalist</i> , 2014 , 184, 777-86	3.7	16
70	Male morphology and dishonest signalling in a fig wasp. <i>Animal Behaviour</i> , 2009 , 78, 147-153	2.8	16
69	Virginity in haplodiploid populations: a comparison of estimation methods. <i>Ecological Entomology</i> , 1998 , 23, 207-210	2.1	16
68	The evolution of collective infectious units in viruses. <i>Virus Research</i> , 2019 , 265, 94-101	6.4	15
67	Cooperation, clumping and the evolution of multicellularity. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2015 , 282, 20151075	4.4	15
66	Can natural selection favour altruism between species?. <i>Journal of Evolutionary Biology</i> , 2013 , 26, 1854	-65 3	15
65	Restricting mutualistic partners to enforce trade reliance. <i>Nature Communications</i> , 2016 , 7, 10322	17.4	14
64	Haplodiploidy and the evolution of eusociality: worker reproduction. <i>American Naturalist</i> , 2013 , 182, 421-38	3.7	14
63	Testing the pluralist approach to sex: the influence of environment on synergistic interactions between mutation load and parasitism in Daphnia magna. <i>Journal of Evolutionary Biology</i> , 2006 , 19, 160)3 ² -1 ³ 1	14
62	Sociomics: Using Omic Approaches to Understand Social Evolution. <i>Trends in Genetics</i> , 2017 , 33, 408-41	9 8.5	13
61	Parasitism and breeding system variation in North American populations of Daphnia pulex. <i>Ecological Research</i> , 2008 , 23, 235-240	1.9	13
60	How host plant variability influences the advantages to learning: a theoretical model for oviposition behaviour in Lepidoptera. <i>Journal of Theoretical Biology</i> , 2008 , 251, 404-10	2.3	13

59	An experimental study of strong reciprocity in bacteria. <i>Biology Letters</i> , 2014 , 10, 20131069	3.6	12
58	Evolution: what is an organism?. Current Biology, 2009, 19, R1080-2	6.3	12
57	Fast-killing parasites can be favoured in spatially structured populations. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2017 , 372,	5.8	11
56	Using sex ratios: why bother? 2002, 399-413		11
55	The cost and benefit of quorum sensing-controlled bacteriocin production in Lactobacillus plantarum. <i>Journal of Evolutionary Biology</i> , 2020 , 33, 101-111	2.3	11
54	The evolution of cooperation in simple molecular replicators. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2017 , 284,	4.4	10
53	The costs and benefits of multicellular group formation in algae. <i>Evolution; International Journal of Organic Evolution</i> , 2019 , 73, 1296-1308	3.8	10
52	Evolution: Welcome to Symbiont Prison. <i>Current Biology</i> , 2016 , 26, R66-R68	6.3	10
51	Haplodiploidy and the evolution of eusociality: worker revolution. <i>American Naturalist</i> , 2014 , 184, 303-	17 _{3.7}	10
50	Pyoverdin cheats fail to invade bacterial populations in stationary phase. <i>Journal of Evolutionary Biology</i> , 2016 , 29, 1728-36	2.3	10
49	Inexplicably female-biased sex ratios in Melittobia wasps. <i>Evolution; International Journal of Organic Evolution</i> , 2014 , 68, 2709-17	3.8	9
48	Sex may need more than one. <i>Journal of Evolutionary Biology</i> , 1999 , 12, 1053-1055	2.3	9
47	Adaptation is maintained by the parliament of genes. <i>Nature Communications</i> , 2019 , 10, 5163	17.4	9
46	Darwin@ aliens. International Journal of Astrobiology, 2019 , 18, 1-9	1.4	9
45	The coevolution of cooperation and cognition in humans. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2018 , 285,	4.4	9
44	Evidence for strategic cooperation in humans. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2017 , 284,	4.4	8
43	Constraints on adaptation: explaining deviation from optimal sex ratio using artificial neural networks. <i>Journal of Evolutionary Biology</i> , 2010 , 23, 1708-19	2.3	8
42	Virginity and the clutch size behavior of a parasitoid wasp where mothers mate their sons. <i>Behavioral Ecology</i> , 2010 , 21, 730-738	2.3	8

41	Modeling relatedness and demography in social evolution. <i>Evolution Letters</i> , 2018 , 2, 260-271	5.3	8
40	Transmission, relatedness, and the evolution of cooperative symbionts. <i>Journal of Evolutionary Biology</i> , 2019 , 32, 1036-1045	2.3	7
39	Toxoplasma gondii, sex and premature rejection. <i>Trends in Parasitology</i> , 2003 , 19, 155-7; discussion 157-	-8 6.4	7
38	TESTING FOR EPISTASIS BETWEEN DELETERIOUS MUTATIONS IN A PARASITOID WASP. <i>Evolution;</i> International Journal of Organic Evolution, 2003 , 57, 1698	3.8	7
37	Sex ratios of malaria parasites and related protozoa 2002 , 314-332		7
36	Paying for sex is not easy. <i>Nature</i> , 2000 , 407, 962	50.4	7
35	Correlates of cooperation in a one-shot high-stakes televised prisoners@dilemma. <i>PLoS ONE</i> , 2012 , 7, e33344	3.7	7
34	Plasmids do not consistently stabilize cooperation across bacteria but may promote broad pathogen host-range. <i>Nature Ecology and Evolution</i> , 2021 , 5, 1624-1636	12.3	7
33	Partial local mate competition and the sex ratio: A study on non-pollinating fig wasps. <i>Journal of Evolutionary Biology</i> , 1998 , 11, 531	2.3	7
32	The Pseudomonas aeruginosa PSL polysaccharide is a social but non-cheatable trait in biofilms		7
31	Payoff-based learning best explains the rate of decline in cooperation across 237 public-goods games. <i>Nature Human Behaviour</i> , 2021 , 5, 1330-1338	12.8	7
30	SEX-RATIO ADJUSTMENT WHEN RELATIVES INTERACT: A TEST OF CONSTRAINTS ON ADAPTATION. <i>Evolution; International Journal of Organic Evolution</i> , 2005 , 59, 1211	3.8	6
29	Wild, Gardner & West reply. <i>Nature</i> , 2010 , 463, E9-E10	50.4	5
28	The social coevolution hypothesis for the origin of enzymatic cooperation. <i>Nature Ecology and Evolution</i> , 2020 , 4, 132-137	12.3	5
27	Crystal toxins and the volunteer@dilemma in bacteria. <i>Journal of Evolutionary Biology</i> , 2019 , 32, 310-31	92.3	4
26	Functional amyloids promote retention of public goods in bacteria. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2019 , 286, 20190709	4.4	4
25	Altruism in a virus. <i>Nature Microbiology</i> , 2019 , 4, 910-911	26.6	4
24	Evolutionary maintenance of genomic diversity within arbuscular mycorrhizal fungi. <i>Ecology and Evolution</i> , 2019 , 9, 2425-2435	2.8	4

23	Human behavioral ecology. Behavioral Ecology, 2013, 24, 1043-1045	2.3	4
22	Fighting in fig wasps: do males avoid killing brothers or do they never meet them?. <i>Ecological Entomology</i> , 2015 , 40, 741-747	2.1	4
21	Signalling of information that is neither cryptic nor private. <i>Journal of Evolutionary Biology</i> , 2017 , 30, 806-813	2.3	3
20	Molecular markers reveal reproductive strategies of non-pollinating fig wasps. <i>Ecological Entomology</i> , 2017 , 42, 689-696	2.1	3
19	SEX-RATIO EVOLUTION IN SEX CHANGING ANIMALS. <i>Evolution; International Journal of Organic Evolution</i> , 2004 , 58, 1019	3.8	3
18	Learning in a Black Box. SSRN Electronic Journal,	1	3
17	Communication in bacteria 2008 , 11-32		3
16	Kin discrimination, negative relatedness, and how to distinguish between selfishness and spite. <i>Evolution Letters</i> , 2020 , 4, 65-72	5.3	2
15	Theory of Cooperation 2016 , 1-8		2
14	Theory of Cooperation 2009 ,		2
13	Theory of Cooperation 2009, Social evolution: cooperation by conflict. <i>Current Biology</i> , 2006, 16, R365-7	6.3	2
		6.3	
13	Social evolution: cooperation by conflict. <i>Current Biology</i> , 2006 , 16, R365-7	,	2
13	Social evolution: cooperation by conflict. <i>Current Biology</i> , 2006 , 16, R365-7 Evolution: revenge of the clones!. <i>Current Biology</i> , 2005 , 15, R547-9	6.3	2
13 12 11	Social evolution: cooperation by conflict. <i>Current Biology</i> , 2006 , 16, R365-7 Evolution: revenge of the clones!. <i>Current Biology</i> , 2005 , 15, R547-9 The evolution of cheating in viruses. <i>Nature Communications</i> , 2021 , 12, 6928 Relatedness and the evolution of mechanisms to divide labor in microorganisms. <i>Ecology and</i>	6.3	2 2
13 12 11	Social evolution: cooperation by conflict. <i>Current Biology</i> , 2006 , 16, R365-7 Evolution: revenge of the clones!. <i>Current Biology</i> , 2005 , 15, R547-9 The evolution of cheating in viruses. <i>Nature Communications</i> , 2021 , 12, 6928 Relatedness and the evolution of mechanisms to divide labor in microorganisms. <i>Ecology and Evolution</i> , 2021 , 11, 14475-14489 Kin selection for cooperation in natural bacterial populations <i>Proceedings of the National Academy</i>	6.3	2 2 2
13 12 11 10	Social evolution: cooperation by conflict. <i>Current Biology</i> , 2006 , 16, R365-7 Evolution: revenge of the clones!. <i>Current Biology</i> , 2005 , 15, R547-9 The evolution of cheating in viruses. <i>Nature Communications</i> , 2021 , 12, 6928 Relatedness and the evolution of mechanisms to divide labor in microorganisms. <i>Ecology and Evolution</i> , 2021 , 11, 14475-14489 Kin selection for cooperation in natural bacterial populations <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	6.3 17.4 2.8	2 2 2 2

5	What do humans maximize?23-49		1
4	Cooperative interactions among females can lead to even more extraordinary sex ratios. <i>Evolution Letters</i> , 2021 , 5, 370-384	5.3	1
3	Honest signaling and the double counting of inclusive fitness. Evolution Letters, 2019, 3, 428-433	5.3	O
2	Sex change and relative body size in animals (reply). <i>Nature</i> , 2004 , 428, 2-2	50.4	О
1	Social evolution: evolving sex ratios. <i>Current Biology</i> , 2011 , 21, R992-4	6.3	