Jeffrey M Friedman

List of Publications by Citations

Source: https://exaly.com/author-pdf/8211271/jeffrey-m-friedman-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80 24,571 71 39 h-index g-index citations papers 80 26,796 6.9 23.2 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
71	Positional cloning of the mouse obese gene and its human homologue. <i>Nature</i> , 1994 , 372, 425-32	50.4	10734
70	Leptin and the regulation of body weight in mammals. <i>Nature</i> , 1998 , 395, 763-70	50.4	4178
69	Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. <i>Nature Genetics</i> , 1996 , 14, 95-7	36.3	903
68	Rapid rewiring of arcuate nucleus feeding circuits by leptin. <i>Science</i> , 2004 , 304, 110-5	33.3	784
67	Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. <i>Nature</i> , 2013 , 493, 532-6	50.4	731
66	Identification of white adipocyte progenitor cells in vivo. Cell, 2008, 135, 240-9	56.2	707
65	Acute stimulation of glucose metabolism in mice by leptin treatment. <i>Nature</i> , 1997 , 389, 374-7	50.4	611
64	Selective deletion of leptin receptor in neurons leads to obesity. <i>Journal of Clinical Investigation</i> , 2001 , 108, 1113-1121	15.9	434
63	Leptin targets in the mouse brain. <i>Journal of Comparative Neurology</i> , 2009 , 514, 518-32	3.4	357
62	Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. <i>Science</i> , 2012 , 336, 604-8	33.3	354
61	Modern science versus the stigma of obesity. <i>Nature Medicine</i> , 2004 , 10, 563-9	50.5	327
60	Transgenic mice expressing green fluorescent protein under the control of the melanocortin-4 receptor promoter. <i>Journal of Neuroscience</i> , 2003 , 23, 7143-54	6.6	315
59	Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. <i>Science</i> , 2001 , 291, 2608-13	33.3	305
58	A war on obesity, not the obese. <i>Science</i> , 2003 , 299, 856-8	33.3	294
57	Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. <i>Cell</i> , 2015 , 163, 84-94	56.2	243
56	Relatively low plasma leptin concentrations precede weight gain in Pima Indians. <i>Nature Medicine</i> , 1997 , 3, 238-40	50.5	216
55	Leptin at 14 y of age: an ongoing story. American Journal of Clinical Nutrition, 2009 , 89, 973S-979S	7	211

54	Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cell Metabolism, 2010, 11, 11-22	24.6	203
53	Molecular profiling of activated neurons by phosphorylated ribosome capture. <i>Cell</i> , 2012 , 151, 1126-37	56.2	197
52	Hyperleptinemia is required for the development of leptin resistance. <i>PLoS ONE</i> , 2010 , 5, e11376	3.7	197
51	Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. <i>Nature</i> , 2016 , 531, 647-50	50.4	159
50	Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. <i>Nature Neuroscience</i> , 2014 , 17, 27-9	25.5	151
49	Site and mechanism of leptin action in a rodent form of congenital lipodystrophy. <i>Journal of Clinical Investigation</i> , 2004 , 113, 414-424	15.9	146
48	Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. <i>Nature Medicine</i> , 2015 , 21, 92-98	50.5	143
47	Leptin and the endocrine control of energy balance. <i>Nature Metabolism</i> , 2019 , 1, 754-764	14.6	109
46	Molecular profiling of neurons based on connectivity. <i>Cell</i> , 2014 , 157, 1230-42	56.2	107
45	Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar. <i>ELife</i> , 2013 , 2, e01462	8.9	93
44	Leptin and the regulation of body weigh. Keio Journal of Medicine, 2011, 60, 1-9	1.6	84
43	Human leptin characterization. <i>Nature</i> , 1996 , 382, 589	50.4	72
42	Identification of a Brainstem Circuit Controlling Feeding. Cell, 2017, 170, 429-442.e11	56.2	68
41	The molecular basis of the obese mutation in ob2J mice. <i>Genomics</i> , 1997 , 42, 152-6	4.3	61
40	20 years of leptin: from the discovery of the leptin gene to leptin in our therapeutic armamentarium. <i>Metabolism: Clinical and Experimental</i> , 2015 , 64, 1-4	12.7	56
39	Absence of soluble leptin receptor in plasma from dbPas/dbPas and other db/db mice. <i>Journal of Biological Chemistry</i> , 1998 , 273, 10078-82	5.4	53
38	A critical role for mTORC1 in erythropoiesis and anemia. <i>ELife</i> , 2014 , 3, e01913	8.9	50
37	Dysregulation of a long noncoding RNA reduces leptin leading to a leptin-responsive form of obesity. <i>Nature Medicine</i> , 2019 , 25, 507-516	50.5	49

36	PET imaging of leptin biodistribution and metabolism in rodents and primates. <i>Cell Metabolism</i> , 2009 , 10, 148-59	24.6	48
35	A tale of two hormones. <i>Nature Medicine</i> , 2010 , 16, 1100-6	50.5	42
34	Rapid Molecular Profiling of Defined Cell Types Using Viral TRAP. Cell Reports, 2017, 19, 655-667	10.6	39
33	Molecular characterization of neuronal cell types based on patterns of projection with Retro-TRAP. <i>Nature Protocols</i> , 2015 , 10, 1319-27	18.8	34
32	Gene Expression Profiling with Cre-Conditional Pseudorabies Virus Reveals a Subset of Midbrain Neurons That Participate in Reward Circuitry. <i>Journal of Neuroscience</i> , 2017 , 37, 4128-4144	6.6	31
31	Cellular program controlling the recovery of adipose tissue mass: An in vivo imaging approach. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12985-90	11.5	31
30	Regulation of Energy Expenditure by Brainstem GABA Neurons. <i>Cell</i> , 2019 , 178, 672-685.e12	56.2	29
29	Eland EAdrenergic Receptor-Mediated Mesolimbic Homeostatic Plasticity Confers Resilience to Social Stress in Susceptible Mice. <i>Biological Psychiatry</i> , 2019 , 85, 226-236	7.9	29
28	A Role of Drd2 Hippocampal Neurons in Context-Dependent Food Intake. <i>Neuron</i> , 2019 , 102, 873-886.	e513.9	27
27	A noncanonical PPAR/RXREbinding sequence regulates leptin expression in response to changes in adipose tissue mass. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E6039-E6047	11.5	24
26	Nuclear Factor-Y is an adipogenic factor that regulates leptin gene expression. <i>Molecular Metabolism</i> , 2015 , 4, 392-405	8.8	23
25	Molecular annotation of integrative feeding neural circuits. <i>Cell Metabolism</i> , 2011 , 13, 222-32	24.6	19
24	Mouse chromosome 4. <i>Mammalian Genome</i> , 1992 , 3 Spec No, S55-64	3.2	19
23	Molecular profiling of reticular gigantocellularis neurons indicates that eNOS modulates environmentally dependent levels of arousal. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E6900-E6909	11.5	18
22	Functional analysis reveals differential effects of glutamate and MCH neuropeptide in MCH neurons. <i>Molecular Metabolism</i> , 2018 , 13, 83-89	8.8	16
21	The reward value of sucrose in leptin-deficient obese mice. <i>Molecular Metabolism</i> , 2014 , 3, 73-80	8.8	14
20	Strategies for the molecular genetic analysis of obesity in humans. <i>Critical Reviews in Food Science and Nutrition</i> , 1993 , 33, 351-8	11.5	12
19	Reanalysis of parabiosis of obesity mutants in the age of leptin. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E3874-82	11.5	10

(2018-2020)

18	Control of non-homeostatic feeding in sated mice using associative learning of contextual food cues. <i>Molecular Psychiatry</i> , 2020 , 25, 666-679	15.1	10
17	Plasmonic activation of gold nanorods for remote stimulation of calcium signaling and protein expression in HEK 293T cells. <i>Biotechnology and Bioengineering</i> , 2016 , 113, 2228-40	4.9	9
16	Molecular and cellular characterization of nicotinic acetylcholine receptor subtypes in the arcuate nucleus of the mouse hypothalamus. <i>European Journal of Neuroscience</i> , 2018 , 48, 1600	3.5	9
15	A limbic circuit selectively links active escape to food suppression. <i>ELife</i> , 2020 , 9,	8.9	8
14	Electromagnetic Regulation of Cell Activity. Cold Spring Harbor Perspectives in Medicine, 2019, 9,	5.4	8
13	A General Method for Insertion of Functional Proteins within Proteins via Combinatorial Selection of Permissive Junctions. <i>Chemistry and Biology</i> , 2015 , 22, 1134-43		7
12	Uncovering a possible role of reactive oxygen species in magnetogenetics. <i>Scientific Reports</i> , 2020 , 10, 13096	4.9	7
11	Gut-to-brain signals in feeding control. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2021 , 320, E326-E332	6	7
10	Selection of a Full Agonist Combinatorial Antibody that Rescues Leptin Deficiency In Vivo. <i>Advanced Science</i> , 2020 , 7, 2000818	13.6	3
9	Top-down control of conditioned overconsumption is mediated by insular cortex Nos1 neurons. <i>Cell Metabolism</i> , 2021 , 33, 1418-1432.e6	24.6	3
8	The genetic structure of the Turkish population reveals high levels of variation and admixture. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
7	Author response: Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar 2013 ,		2
6	Limitation of adipose tissue by the number of embryonic progenitor cells. ELife, 2020, 9,	8.9	2
5	Higher-Order Inputs Involved in Appetite Control. <i>Biological Psychiatry</i> , 2021 ,	7.9	2
4	Critical roles of transcriptional coactivator MED1 in the formation and function of mouse adipose tissues. <i>Genes and Development</i> , 2021 , 35, 729-748	12.6	1
3	Functional analysis of distinct populations of subthalamic nucleus neurons on Parkinson\ddot\ddot\ddot\ddot\dot\dot\dot\dot\dot	15.1	1
2	How the discovery of microbial opsins led to the development of optogenetics. <i>Cell</i> , 2021 , 184, 5266-5	275% .2	0
1	Roles and regulations of dopaminergic pathways in repeated stress-induced emotional changes. <i>Proceedings for Annual Meeting of the Japanese Pharmacological Society</i> , 2018 , WCP2018, SY72-4	Ο	