List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8211271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Positional cloning of the mouse obese gene and its human homologue. Nature, 1994, 372, 425-432.	27.8	12,218
2	Leptin and the regulation of body weight in mammals. Nature, 1998, 395, 763-770.	27.8	4,702
3	Leptin activation of Stat3 in the hypothalamus of wild–type and ob/ob mice but not db/db mice. Nature Genetics, 1996, 14, 95-97.	21.4	1,000
4	Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature, 2013, 493, 532-536.	27.8	961
5	Rapid Rewiring of Arcuate Nucleus Feeding Circuits by Leptin. Science, 2004, 304, 110-115.	12.6	890
6	Identification of White Adipocyte Progenitor Cells In Vivo. Cell, 2008, 135, 240-249.	28.9	828
7	Acute stimulation of glucose metabolism in mice by leptin treatment. Nature, 1997, 389, 374-377.	27.8	676
8	Selective deletion of leptin receptor in neurons leads to obesity. Journal of Clinical Investigation, 2001, 108, 1113-1121.	8.2	482
9	Radio-Wave Heating of Iron Oxide Nanoparticles Can Regulate Plasma Glucose in Mice. Science, 2012, 336, 604-608.	12.6	428
10	Leptin targets in the mouse brain. Journal of Comparative Neurology, 2009, 514, 518-532.	1.6	417
11	Virus-Assisted Mapping of Neural Inputs to a Feeding Center in the Hypothalamus. Science, 2001, 291, 2608-2613.	12.6	376
12	Modern science versus the stigma of obesity. Nature Medicine, 2004, 10, 563-569.	30.7	372
13	Sympathetic Neuro-adipose Connections Mediate Leptin-Driven Lipolysis. Cell, 2015, 163, 84-94.	28.9	363
14	Transgenic Mice Expressing Green Fluorescent Protein under the Control of the Melanocortin-4 Receptor Promoter. Journal of Neuroscience, 2003, 23, 7143-7154.	3.6	341
15	A War on Obesity, Not the Obese. Science, 2003, 299, 856-858.	12.6	330
16	Leptin and the endocrine control of energy balance. Nature Metabolism, 2019, 1, 754-764.	11.9	295
17	Molecular Profiling of Activated Neurons by Phosphorylated Ribosome Capture. Cell, 2012, 151, 1126-1137.	28.9	270
18	Antidiabetic Effects of IGFBP2, a Leptin-Regulated Gene. Cell Metabolism, 2010, 11, 11-22.	16.2	251

#	Article	IF	CITATIONS
19	Hyperleptinemia Is Required for the Development of Leptin Resistance. PLoS ONE, 2010, 5, e11376.	2.5	244
20	Relatively low plasma leptin concentrations precede weight gain in Pima Indians. Nature Medicine, 1997, 3, 238-240.	30.7	238
21	Leptin at 14 y of age: an ongoing story. American Journal of Clinical Nutrition, 2009, 89, 973S-979S.	4.7	237
22	Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature, 2016, 531, 647-650.	27.8	212
23	Causes and control of excess body fat. Nature, 2009, 459, 340-342.	27.8	209
24	Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nature Medicine, 2015, 21, 92-98.	30.7	189
25	Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. Nature Neuroscience, 2014, 17, 27-29.	14.8	178
26	The alphabet of weight control. Nature, 1997, 385, 119-120.	27.8	165
27	Site and mechanism of leptin action in a rodent form of congenital lipodystrophy. Journal of Clinical Investigation, 2004, 113, 414-424.	8.2	158
28	Molecular Profiling of Neurons Based on Connectivity. Cell, 2014, 157, 1230-1242.	28.9	134
29	Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar. ELife, 2013, 2, e01462.	6.0	111
30	Identification of a Brainstem Circuit Controlling Feeding. Cell, 2017, 170, 429-442.e11.	28.9	110
31	Leptin and the Regulation of Body Weigh. Keio Journal of Medicine, 2011, 60, 1-9.	1.1	102
32	Human leptin characterization. Nature, 1996, 382, 589-589.	27.8	88
33	Dysregulation of a long noncoding RNA reduces leptin leading to a leptin-responsive form of obesity. Nature Medicine, 2019, 25, 507-516.	30.7	79
34	Rapid Molecular Profiling of Defined Cell Types Using Viral TRAP. Cell Reports, 2017, 19, 655-667.	6.4	77
35	Regulation of Energy Expenditure by Brainstem GABA Neurons. Cell, 2019, 178, 672-685.e12.	28.9	69
36	Absence of Soluble Leptin Receptor in Plasma fromdbPas/dbPas and Otherdb/db Mice. Journal of Biological Chemistry, 1998, 273, 10078-10082.	3.4	68

#	Article	IF	CITATIONS
37	20 years of leptin: From the discovery of the leptin gene to leptin in our therapeutic armamentarium. Metabolism: Clinical and Experimental, 2015, 64, 1-4.	3.4	68
38	A critical role for mTORC1 in erythropoiesis and anemia. ELife, 2014, 3, e01913.	6.0	67
39	The Molecular Basis of the Obese Mutation in ob2JMice. Genomics, 1997, 42, 152-156.	2.9	66
40	A tale of two hormones. Nature Medicine, 2010, 16, 1100-1106.	30.7	56
41	A Role of Drd2 Hippocampal Neurons in Context-Dependent Food Intake. Neuron, 2019, 102, 873-886.e5.	8.1	54
42	α1- and β3-Adrenergic Receptor–Mediated Mesolimbic Homeostatic Plasticity Confers Resilience to Social Stress in Susceptible Mice. Biological Psychiatry, 2019, 85, 226-236.	1.3	53
43	PET Imaging of Leptin Biodistribution and Metabolism in Rodents and Primates. Cell Metabolism, 2009, 10, 148-159.	16.2	52
44	Gene Expression Profiling with Cre-Conditional Pseudorabies Virus Reveals a Subset of Midbrain Neurons That Participate in Reward Circuitry. Journal of Neuroscience, 2017, 37, 4128-4144.	3.6	47
45	Molecular characterization of neuronal cell types based on patterns of projection with Retro-TRAP. Nature Protocols, 2015, 10, 1319-1327.	12.0	43
46	The genetic structure of the Turkish population reveals high levels of variation and admixture. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42
47	A limbic circuit selectively links active escape to food suppression. ELife, 2020, 9, .	6.0	37
48	Cellular program controlling the recovery of adipose tissue mass: An <i>in vivo</i> imaging approach. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12985-12990.	7.1	34
49	Nuclear Factor-Y is an adipogenic factor that regulates leptin gene expression. Molecular Metabolism, 2015, 4, 392-405.	6.5	32
50	Functional analysis reveals differential effects of glutamate and MCH neuropeptide in MCH neurons. Molecular Metabolism, 2018, 13, 83-89.	6.5	31
51	A noncanonical PPARγ/RXRα-binding sequence regulates leptin expression in response to changes in adipose tissue mass. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6039-E6047.	7.1	27
52	Molecular Annotation of Integrative Feeding Neural Circuits. Cell Metabolism, 2011, 13, 222-232.	16.2	24
53	Molecular profiling of reticular gigantocellularis neurons indicates that eNOS modulates environmentally dependent levels of arousal. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6900-E6909.	7.1	24
54	Top-down control of conditioned overconsumption is mediated by insular cortex Nos1 neurons. Cell Metabolism, 2021, 33, 1418-1432.e6.	16.2	24

#	Article	IF	CITATIONS
55	Control of non-homeostatic feeding in sated mice using associative learning of contextual food cues. Molecular Psychiatry, 2020, 25, 666-679.	7.9	23
56	Uncovering a possible role of reactive oxygen species in magnetogenetics. Scientific Reports, 2020, 10, 13096.	3.3	21
57	Functional analysis of distinct populations of subthalamic nucleus neurons on Parkinson's disease and OCD-like behaviors in mice. Molecular Psychiatry, 2021, 26, 7029-7046.	7.9	20
58	Mouse Chromosome 4. Mammalian Genome, 1992, 3, S55-S64.	2.2	19
59	Gut-to-brain signals in feeding control. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E326-E332.	3.5	19
60	The reward value of sucrose in leptin-deficient obese mice. Molecular Metabolism, 2014, 3, 73-80.	6.5	18
61	Molecular and cellular characterization of nicotinic acetylcholine receptor subtypes in the arcuate nucleus of the mouse hypothalamus. European Journal of Neuroscience, 2018, 48, 1600-1619.	2.6	15
62	Electromagnetic Regulation of Cell Activity. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034322.	6.2	15
63	Higher-Order Inputs Involved in Appetite Control. Biological Psychiatry, 2022, 91, 869-878.	1.3	15
64	Strategies for the molecular genetic analysis of obesity in humans. Critical Reviews in Food Science and Nutrition, 1993, 33, 351-358.	10.3	14
65	Plasmonic activation of gold nanorods for remote stimulation of calcium signaling and protein expression in HEK 293T cells. Biotechnology and Bioengineering, 2016, 113, 2228-2240.	3.3	14
66	Reanalysis of parabiosis of obesity mutants in the age of leptin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3874-82.	7.1	12
67	A General Method for Insertion of Functional Proteins within Proteins via Combinatorial Selection of Permissive Junctions. Chemistry and Biology, 2015, 22, 1134-1143.	6.0	9
68	Selection of a Full Agonist Combinatorial Antibody that Rescues Leptin Deficiency In Vivo. Advanced Science, 2020, 7, 2000818.	11.2	8
69	Restriction of food intake by PPP1R17-expressing neurons in the DMH. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
70	Critical roles of transcriptional coactivator MED1 in the formation and function of mouse adipose tissues. Genes and Development, 2021, 35, 729-748.	5.9	5
71	Limitation of adipose tissue by the number of embryonic progenitor cells. ELife, 2020, 9, .	6.0	4
72	How the discovery of microbial opsins led to the development of optogenetics. Cell, 2021, 184, 5266-5270.	28.9	3

#	Article	IF	CITATIONS
73	Roles and regulations of dopaminergic pathways in repeated stress-induced emotional changes. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY72-4.	0.0	0