
Vincenzo De Michele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8211172/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overview of radiation induced point defects in silica-based optical fibers. Reviews in Physics, 2019, 4, 100032.	4.4	208
2	Origins of radiation-induced attenuation in pure-silica-core and Ge-doped optical fibers under pulsed x-ray irradiation. Journal of Applied Physics, 2020, 128, .	1.1	17
3	Extreme Radiation Sensitivity of Ultra-Low Loss Pure-Silica-Core Optical Fibers at Low Dose Levels and Infrared Wavelengths. Sensors, 2020, 20, 7254.	2.1	17
4	Near-IR- and UV-femtosecond laser waveguide inscription in silica glasses. Optical Materials Express, 2019, 9, 4624.	1.6	15
5	Radiation Effects on Pure-Silica Multimode Optical Fibers in the Visible and Near-Infrared Domains: Influence of OH Groups. Applied Sciences (Switzerland), 2021, 11, 2991.	1.3	10
6	Steady-State X-Ray Radiation-Induced Attenuation in Canonical Optical Fibers. IEEE Transactions on Nuclear Science, 2020, 67, 1650-1657.	1.2	9
7	Photobleaching Effect on Infrared Radiation-Induced Attenuation of Germanosilicate Optical Fibers at MGy Dose Levels. IEEE Transactions on Nuclear Science, 2021, 68, 1688-1693.	1.2	9
8	Pulsed Xâ€Ray Radiation Responses of Solarizationâ€Resistant Optical Fibers. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800487.	0.8	7
9	Transient and Steady-State Radiation Response of Phosphosilicate Optical Fibers: Influence of H ₂ Loading. IEEE Transactions on Nuclear Science, 2020, 67, 289-295.	1.2	7
10	Photobleaching Effect on the Radiationâ€Induced Attenuation of an Ultralow Loss Optical Fiber at Telecommunication Wavelengths. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100518.	0.8	6
11	Multiphoton process investigation in silica by UV femtosecond laser. Journal of Non-Crystalline Solids, 2022, 580, 121384.	1.5	4
12	Temperature Dependence of Radiation Induced Attenuation of Aluminosilicate Optical Fiber. IEEE Transactions on Nuclear Science, 2022, 69, 1515-1520.	1.2	4
13	Pulsed Xâ€Ray Radiation Response of Ultralow Loss Pureâ€Silicaâ€Core Optical Fibers. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100519.	0.8	3
14	Photoluminescence of Point Defects in Silicon Dioxide by Femtosecond Laser Exposure. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000802.	0.8	2
15	Photocycle of point defects in highly- and weakly-germanium doped silica revealed by transient absorption measurements with femtosecond tunable pump. Scientific Reports, 2022, 12, .	1.6	1