List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8211167/publications.pdf Version: 2024-02-01

Lii Lii

#	Article	IF	CITATIONS
1	Highly Stereoselective Synthesis of Tetrasubstituted Vinyl Selenides via Rhodium-Catalyzed [1,4]-Acyl Migration of Selenoesters and Diazo Compounds. Organic Letters, 2022, 24, 2175-2180.	4.6	11
2	Dearomative Iodocyclization of <i>N</i> -(<i>o</i> -Alkynyl)aryl Isoindole. Journal of Organic Chemistry, 2022, 87, 7531-7535.	3.2	4
3	Highly enantioselective tandem cycloisomerization/Diels–Alder reaction of 2-(1-alkynyl)-2-alken-1-ones and enals: dual catalysis with platinum and amines. Chemical Communications, 2021, 57, 5690-5693.	4.1	4
4	Regiospecific and site-selective C–H allylation of phenols with vinyldiazo compounds catalyzed by In(<scp>iii</scp>). Organic Chemistry Frontiers, 2021, 8, 6252-6258.	4.5	6
5	Triflic Acid atalyzed Chemo―and Site‧elective Câ^'H Bond Functionalization of Phenols With 1,3â€Đienes. Advanced Synthesis and Catalysis, 2021, 363, 2740-2745.	4.3	10
6	Iron-catalysed chemo- and <i>ortho</i> -selective C–H bond functionalization of phenols with α-aryl-α-diazoacetates. Organic Chemistry Frontiers, 2021, 8, 3770-3775.	4.5	21
7	BrÃ,nsted acid catalysed chemo- and <i>ortho</i> -selective aminomethylation of phenol. Organic and Biomolecular Chemistry, 2021, 19, 5777-5781.	2.8	6
8	Catalyst-free synthesis of α,α-disubstituted carboxylic acid derivatives under ambient conditions <i>via</i> a Wolff rearrangement reaction. Organic Chemistry Frontiers, 2021, 8, 6916-6922.	4.5	4
9	Borane-catalysed S–H insertion reaction of thiophenols and thiols with α-aryl-α-diazoesters. Green Synthesis and Catalysis, 2021, 2, 385-388.	6.8	32
10	Palladium/Xiaoâ€Phosâ€Catalyzed Kinetic Resolution of <i>sec</i> â€Phosphine Oxides by <i>P</i> â€Benzylation. Angewandte Chemie - International Edition, 2021, 60, 27247-27252.	13.8	51
11	Modular and stereoselective synthesis of tetrasubstituted vinyl sulfides leading to a library of AlEgens. Nature Communications, 2021, 12, 7298.	12.8	24
12	Phosphine-catalyzed conjugate cyanation of β-trifluoromethyl enones: access to α-trifluoromethyl γ-carbonyl nitriles. Organic Chemistry Frontiers, 2020, 7, 2644-2648.	4.5	11
13	Construction of Pâ€Chiral Alkenylphosphine Oxides through Highly Chemoâ€, Regioâ€, and Enantioselective Hydrophosphinylation of Alkynes. Angewandte Chemie, 2020, 132, 20826-20831.	2.0	18
14	Construction of Pâ€Chiral Alkenylphosphine Oxides through Highly Chemoâ€, Regioâ€, and Enantioselective Hydrophosphinylation of Alkynes. Angewandte Chemie - International Edition, 2020, 59, 20645-20650.	13.8	79
15	Gold-catalyzed intermolecular [4+1] spiroannulation <i>via</i> site-selective aromatic C(sp ²)–H functionalization and dearomatization of phenol derivatives. Chemical Communications, 2020, 56, 8202-8205.	4.1	30
16	Synthesis of pyrazolo[1,5- <i>c</i>]quinazoline derivatives through the copper-catalyzed domino reaction of <i>o</i> -alkenyl aromatic isocyanides with diazo compounds. Chemical Communications, 2020, 56, 7665-7668.	4.1	13
17	Copper-Catalyzed Chemodivergent Cyclization of N-(<i>ortho</i> -alkynyl)aryl-Pyrrole and Indoles. Organic Letters, 2020, 22, 4511-4516.	4.6	17
18	Pd/Xiang-Phos-catalyzed enantioselective intermolecular carboheterofunctionalization under mild conditions. Chemical Science, 2020, 11, 6283-6288.	7.4	34

#	Article	IF	CITATIONS
19	Palladium-Catalyzed Intermolecular Heck-Type Dearomative [4 + 2] Annulation of 2 <i>H</i> -Isoindole Derivatives with Internal Alkynes. Organic Letters, 2020, 22, 5063-5067.	4.6	18
20	Trifluoromethylation/Difluoromethylationâ€Initiated Radical Cyclization of <i>o</i> â€Alkenyl Aromatic Isocyanides for Direct Construction of 4â€Cyanoâ€2â€Trifluoromethyl/Difluoromethylâ€Containing Quinolines. Advanced Synthesis and Catalysis, 2020, 362, 2274-2279.	4.3	31
21	Copper-catalysed <i>ortho</i> -selective C–H bond functionalization of phenols and naphthols with α-aryl-α-diazoesters. Chemical Communications, 2020, 56, 9485-9488.	4.1	42
22	Mechanistic Insights into the Chemo- and Regio-Selective B(C6F5)3 Catalyzed C–H Functionalization of Phenols with Diazoesters. Journal of Organic Chemistry, 2019, 84, 14508-14519.	3.2	27
23	Catalyst-Enabled Chemodivergent Construction of Alkynyl- and Vinyl-Substituted Diarylmethanes from p-Quinone Methides and Alkynes. Organic Letters, 2019, 21, 7539-7543.	4.6	35
24	Baseâ€Catalyzed 1,6â€Hydrophosphonylation of <i>p</i> â€Quinone Methides with Diphenylphosphane Oxide/Phosphites. European Journal of Organic Chemistry, 2019, 2019, 3898-3907.	2.4	17
25	Ligand and counteranion enabled regiodivergent C–H bond functionalization of naphthols with α-aryl-α-diazoesters. Chemical Science, 2019, 10, 6553-6559.	7.4	73
26	Asymmetric Phosphineâ€Catalyzed [4+1] Annulations of <i>o</i> â€Quinone Methides with MBH Carbonates. Advanced Synthesis and Catalysis, 2018, 360, 4475-4479.	4.3	49
27	Phosphine-Catalyzed [3 + 2] Cycloaddition Reaction of α-Diazoacetates and β-Trifluoromethyl Enones: A Facile Access to Multisubstituted 4-(Trifluoromethyl)pyrazolines. Organic Letters, 2018, 20, 6444-6448.	4.6	32
28	Goldâ€Catalyzed Siteâ€Selective Câ^'H Bond Functionalization with Diazo Compounds. Asian Journal of Organic Chemistry, 2018, 7, 2015-2025.	2.7	52
29	Highly <i>para</i> â€Selective Câ^H Alkylation of Benzene Derivatives with 2,2,2â€Trifluoroethyl αâ€Arylâ€Î±â€Diazoesters. Angewandte Chemie - International Edition, 2017, 56, 2749-2753.	13.8	109
30	Highly <i>para</i> â€Selective Câ^'H Alkylation of Benzene Derivatives with 2,2,2â€Trifluoroethyl αâ€Arylâ€Î±â€Diazoesters. Angewandte Chemie, 2017, 129, 2793-2797.	2.0	35
31	Phosphine-catalyzed Friedel–Crafts reaction of naphthols with para-quinone methides: expedient access to triarylmethanes. Organic and Biomolecular Chemistry, 2017, 15, 4941-4945.	2.8	45
32	Phosphine-Catalyzed Asymmetric Intermolecular Cross-Vinylogous Rauhut–Currier Reactions of Vinyl Ketones with <i>para</i> -Quinone Methides. ACS Catalysis, 2017, 7, 2805-2809.	11.2	144
33	A One-Pot Construction of Halogenated Trifluoromethylated Pyrroles through NXS (X = Br, I) Triggered Cascade. Organic Letters, 2017, 19, 4968-4971.	4.6	47
34	Phosphine-Catalyzed Diastereo- and Enantioselective Michael Addition of β-Carbonyl Esters to β-Trifluoromethyl and β-Ester Enones: Enhanced Reactivity by Inorganic Base. Organic Letters, 2017, 19, 5102-5105.	4.6	38
35	Silver atalyzed Double Hydrocarbonation of 2â€Trifluoromethylâ€1,3â€Conjugated Enynes with 1,3â€Dicarbonyl Compounds: Synthesis of Ringâ€Trifluoromethylated Cyclopentene. Advanced Synthesis and Catalysis, 2017, 359, 3555-3559.	4.3	12
36	Gold-catalyzed para-selective C–H bond alkylation of benzene derivatives with donor/acceptor-substituted diazo compounds. Chemical Communications, 2017, 53, 10164-10167.	4.1	54

#	Article	IF	CITATIONS
37	Development of Transition-Metal-Catalyzed C(sp ²)-H Functionalization of Arenes with Diazo Compounds. Chinese Journal of Organic Chemistry, 2017, 37, 1117.	1.3	28
38	Triflic Acidâ€Catalyzed Enynes Cyclization: A New Strategy beyond Electrophilic Ï€â€Activation. Chemistry - A European Journal, 2016, 22, 8488-8492.	3.3	14
39	Enantioselective Synthesis of 4 <i>H</i> â€Pyrans Through Organocatalytic Asymmetric Formal [3+3] Cycloadditions of 2â€(1â€Alkynyl)â€2â€alkenâ€1â€ones with βâ€Keto Esters. Advanced Synthesis an 2016, 358, 3015-3020.	d4 Ca talysi	s,23
40	(C ₆ F ₅) ₃ B Catalyzed Chemoselective and <i>ortho</i> ‣elective Substitution of Phenols with αâ€Aryl αâ€Diazoesters. Angewandte Chemie - International Edition, 2016, 55, 14807-14811.	13.8	152
41	Enantioselective gold-catalyzed intermolecular [2 + 2]-cycloadditions of 3-styrylindoles with N-allenyl oxazolidinone. Organic Chemistry Frontiers, 2016, 3, 759-763.	4.5	70
42	Gold-catalysed facile access to indene scaffolds via sequential C–H functionalization and 5-endo-dig carbocyclization. Chemical Communications, 2016, 52, 9351-9354.	4.1	77
43	Gold-catalyzed transformations of α-diazocarbonyl compounds: selectivity and diversity. Chemical Society Reviews, 2016, 45, 506-516.	38.1	402
44	Alstorisine A, a nor-monoterpenoid indole alkaloid from cecidogenous leaves of Alstonia scholaris. Tetrahedron Letters, 2016, 57, 1754-1757.	1.4	31
45	Mechanistic Investigation of Aromatic C(sp ²)–H and Alkyl C(sp ³)–H Bond Insertion by Cold Carbenes. Journal of Physical Chemistry A, 2016, 120, 1925-1932.	2.5	29
46	Origins of unique gold-catalysed chemo- and site-selective C–H functionalization of phenols with diazo compounds. Chemical Science, 2016, 7, 1988-1995.	7.4	118
47	Cold-catalyzed construction of two adjacent quaternary stereocenters via sequential C–H functionalization and aldol annulation. Chemical Communications, 2016, 52, 2257-2260.	4.1	75
48	Oxa-Diels–Alder Reaction of Isatins and Acyclic α,β-Unsaturated Methyl Ketones through Cooperative Dienamine and Metal Lewis Acid Catalysis. Synthesis, 2014, 46, 1339-1347.	2.3	7
49	Product Selectivity Control in the Domino Cyclization of 2-(2-Alkynylarylidene)-1,3-dicarbonyl Compounds Catalyzed by Metal Lewis Acids. Synthesis, 2014, 46, 2133-2142.	2.3	5
50	Highly Site-Selective Direct C–H Bond Functionalization of Phenols with α-Aryl-α-diazoacetates and Diazooxindoles via Gold Catalysis. Journal of the American Chemical Society, 2014, 136, 6904-6907.	13.7	400
51	Scandium-catalyzed tandem selective oxirane ring-opening/Friedel–Crafts alkylation: a facile access to [1,4]oxazino[4,3-a]indoles and 3,4-dihydro-1H-pyrrolo[2,1-c][1,4]oxazines. Organic and Biomolecular Chemistry, 2014, 12, 6869.	2.8	19
52	Arylamine atalyzed Enamine Formation: Cooperative Catalysis with Arylamines and Acids. Angewandte Chemie - International Edition, 2013, 52, 3663-3667.	13.8	79
53	Asymmetric Inverseâ€Electronâ€Demand Heteroâ€Diels–Alder Reaction of Sixâ€membered Cyclic Ketones: An Enamine/Metal Lewis Acid Bifunctional Approach. Angewandte Chemie - International Edition, 2011, 50, 3484-3488.	13.8	110
54	A Facile Route to Polysubstituted Naphthalenes and Benzofluorenols <i>via</i> Scandium Triflate―and Triflic Acid―Catalyzed Benzannulation of 2â€(2â€Alkynylarylidene)―1,3â€Dicarbonyl Compounds. Advanced Synthesis and Catalysis, 2010, 352, 1920-1924.	4.3	34

#	Article	IF	CITATIONS
55	Oneâ€Pot Tandem Catalysis: A Concise Route to Fused Bicyclic Scaffolds from Acyclic βâ€Ketoesters and Alkynyl Aldehydes. Chemistry - A European Journal, 2010, 16, 11813-11817.	3.3	33
56	Selectivity Control in Lewis Acid Catalyzed Regiodivergent Tandem Cationic Cyclization/Ring Expansion Terminated by Pinacol Rearrangement. Angewandte Chemie - International Edition, 2009, 48, 6093-6096.	13.8	73
57	Palladium/Xiaoâ€Phos atalyzedÂKinetic Resolution of secâ€Phosphine Oxides by Pâ€Benzylation. Angewandte Chemie, 0, , .	2.0	11